首页 正文

Birth defects research. 2025 Mar;117(3):e2451. doi: 10.1002/bdr2.2451 Q31.62025

Machine Learning and Natural Language Processing to Improve Classification of Atrial Septal Defects in Electronic Health Records

利用机器学习和自然语言处理改进电子健康记录中房间隔缺损的分类 翻译改进

Yuting Guo  1, Haoming Shi  2, Wendy M Book  3  4, Lindsey Carrie Ivey  4, Fred H Rodriguez 3rd  3, Reza Sameni  1, Cheryl Raskind-Hood  4, Chad Robichaux  1, Karrie F Downing  5, Abeed Sarker  1

作者单位 +展开

作者单位

  • 1 Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • 2 Department of Biomedical Engineering, Georgia Institute Technology, Atlanta, Georgia, USA.
  • 3 Department of Cardiology, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • 4 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.
  • 5 National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • DOI: 10.1002/bdr2.2451 PMID: 40035168

    摘要 Ai翻译

    Background: International Classification of Disease (ICD) codes can accurately identify patients with certain congenital heart defects (CHDs). In ICD-defined CHD data sets, the code for secundum atrial septal defect (ASD) is the most common, but it has a low positive predictive value for CHD, potentially resulting in the drawing of erroneous conclusions from such data sets. Methods with reduced false positive rates for CHD am... ...点击完成人机验证后继续浏览
    Copyright © Birth defects research. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Birth defects research

    缩写:BIRTH DEFECTS RES

    ISSN:2472-1727

    e-ISSN:2472-1727

    IF/分区:1.6/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Machine Learning and Natural Language Processing to Improve Classification of Atrial Septal Defects in Electronic Health Records