首页 正文

JAMIA open. 2021 Mar 17;4(1):ooab011. doi: 10.1093/jamiaopen/ooab011 Q13.42025

Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts

基于电子健康档案的自然语言处理和机器学习预测首次自杀尝试事件 翻译改进

Fuchiang R Tsui  1  2  3  4, Lingyun Shi  1  3, Victor Ruiz  1  3, Neal D Ryan  5, Candice Biernesser  5, Satish Iyengar  6, Colin G Walsh  7, David A Brent  5

作者单位 +展开

作者单位

  • 1 Tsui Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  • 2 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  • 3 Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
  • 4 Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
  • 5 Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
  • 6 Department of Statistics, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
  • 7 Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.
  • DOI: 10.1093/jamiaopen/ooab011 PMID: 33758800

    摘要 Ai翻译

    Objective: Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natural language processing (NLP) and machine learning (ML) to unstructured (narrative) clinical notes and structured electronic health record (EHR) data. ... ...点击完成人机验证后继续浏览
    Copyright © JAMIA open. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Jamia open

    缩写:

    ISSN:N/A

    e-ISSN:2574-2531

    IF/分区:3.4/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts