首页 正文

Journal of medical Internet research. 2021 Mar 8;23(3):e22951. doi: 10.2196/22951 Q16.02025

Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation

基于电子健康记录进行中风识别的自然语言处理和机器学习算法的研发与验证 翻译改进

Yiqing Zhao  1, Sunyang Fu  1, Suzette J Bielinski  1, Paul A Decker  1, Alanna M Chamberlain  1, Veronique L Roger  1, Hongfang Liu  1, Nicholas B Larson  1

作者单位 +展开

作者单位

  • 1 Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.
  • DOI: 10.2196/22951 PMID: 33683212

    摘要 Ai翻译

    Background: Stroke is an important clinical outcome in cardiovascular research. However, the ascertainment of incident stroke is typically accomplished via time-consuming manual chart abstraction. Current phenotyping efforts using electronic health records for stroke focus on case ascertainment rather than incident disease, which requires knowledge of the temporal sequence of events. ... ...点击完成人机验证后继续浏览
    Copyright © Journal of medical Internet research. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of medical internet research

    缩写:J MED INTERNET RES

    ISSN:1438-8871

    e-ISSN:N/A

    IF/分区:6.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Natural Language Processing and Machine Learning for Identifying Incident Stroke From Electronic Health Records: Algorithm Development and Validation