首页 正文

Briefings in bioinformatics. 2024 Sep 23;25(6):bbae486. doi: 10.1093/bib/bbae486 Q17.72025

scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks

基于深度融合网络改进的单细胞RNA测序聚类方法 翻译改进

Tianxiang Liu  1, Cangzhi Jia  1, Yue Bi  2, Xudong Guo  3, Quan Zou  4, Fuyi Li  3  5

作者单位 +展开

作者单位

  • 1 School of Science, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China.
  • 2 Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.
  • 3 College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi,China.
  • 4 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China.
  • 5 South Australian Immunogenomics Cancer Institute, The University of Adelaide, 4 North Terrace, SA 5000, Australia.
  • DOI: 10.1093/bib/bbae486 PMID: 39373051

    摘要 中英对照阅读

    Single-cell ribonucleic acid sequencing (scRNA-seq) technology can be used to perform high-resolution analysis of the transcriptomes of individual cells. Therefore, its application has gained popularity for accurately analyzing the ever-increasing content of heterogeneous single-cell datasets. Central to interpreting scRNA-seq data is the clustering of cells to decipher transcriptomic diversity and infer cell behavior patterns. However, its complexity necessitates the application of advanced methodologies capable of resolving the inherent heterogeneity and limited gene expression characteristics of single-cell data. Herein, we introduce a novel deep learning-based algorithm for single-cell clustering, designated scDFN, which can significantly enhance the clustering of scRNA-seq data through a fusion network strategy. The scDFN algorithm applies a dual mechanism involving an autoencoder to extract attribute information and an improved graph autoencoder to capture topological nuances, integrated via a cross-network information fusion mechanism complemented by a triple self-supervision strategy. This fusion is optimized through a holistic consideration of four distinct loss functions. A comparative analysis with five leading scRNA-seq clustering methodologies across multiple datasets revealed the superiority of scDFN, as determined by better the Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI) metrics. Additionally, scDFN demonstrated robust multi-cluster dataset performance and exceptional resilience to batch effects. Ablation studies highlighted the key roles of the autoencoder and the improved graph autoencoder components, along with the critical contribution of the four joint loss functions to the overall efficacy of the algorithm. Through these advancements, scDFN set a new benchmark in single-cell clustering and can be used as an effective tool for the nuanced analysis of single-cell transcriptomics.

    Keywords: autoencoder; clustering; deep learning; single-cell RNA sequencing.

    Keywords:single-cell RNA-seq; clustering; deep fusion networks

    单细胞核糖核酸测序(scRNA-seq)技术可用于进行单个细胞转录组的高分辨率分析。因此,它被广泛应用于准确地分析不断增长的异质性单细胞数据集。解释scRNA-seq数据的关键是通过聚类来解析转录组多样性并推断细胞行为模式。然而,其复杂性需要应用高级方法来解决单细胞数据内在的异质性和有限的基因表达特征问题。在这里,我们介绍了一种基于深度学习的单细胞聚类算法——scDFN,该算法可以通过融合网络策略显著增强scRNA-seq数据的聚类效果。scDFN算法采用双机制,包括用于提取属性信息的自动编码器和改进后的图自动编码器以捕捉拓扑细节,这些组件通过跨网络信息融合机制结合,并辅以三重自监督策略。这种融合经过优化考虑了四种不同的损失函数。与五个领先的scRNA-seq聚类方法在多个数据集上的比较分析显示,scDFN的性能更优,其性能通过更好的归一化互信息(NMI)和调整后的兰德指数(ARI)指标来确定。此外,scDFN还展示了对多簇数据集的强大适应性和对抗批次效应的卓越韧性。消融研究强调了自动编码器和改进后的图自动编码器组件的关键作用,以及四种联合损失函数在算法总体有效性中的关键贡献。通过这些进展,scDFN为单细胞聚类设定了新的基准,并可作为对单细胞转录组学进行精细分析的有效工具。

    关键词:自动编码器;聚类;深度学习;单细胞RNA测序。

    关键词:单细胞RNA测序; 聚类; 深度融合网络

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Briefings in bioinformatics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Briefings in bioinformatics

    缩写:BRIEF BIOINFORM

    ISSN:1467-5463

    e-ISSN:1477-4054

    IF/分区:7.7/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks