首页 正文

Biology. 2024 Sep 11;13(9):713. doi: 10.3390/biology13090713 Q13.52025

scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data

基于变分图注意力自编码模型的单细胞RNA测序数据聚类方法 翻译改进

Lijun Liu  1, Xiaoyang Wu  1, Jun Yu  1, Yuduo Zhang  1, Kaixing Niu  1, Anli Yu  1

作者单位 +展开

作者单位

  • 1 School of Science, Dalian Minzu University, Dalian 116600, China.
  • DOI: 10.3390/biology13090713 PMID: 39336140

    摘要 中英对照阅读

    Single-cell RNA sequencing (scRNA-seq) is now a successful technology for identifying cell heterogeneity, revealing new cell subpopulations, and predicting developmental trajectories. A crucial component in scRNA-seq is the precise identification of cell subsets. Although many unsupervised clustering methods have been developed for clustering cell subpopulations, the performance of these methods is prone to be affected by dropout, high dimensionality, and technical noise. Additionally, most existing methods are time-consuming and fail to fully consider the potential correlations between cells. In this paper, we propose a novel unsupervised clustering method called scVGATAE (Single-cell Variational Graph Attention Autoencoder) for scRNA-seq data. This method constructs a reliable cell graph through network denoising, utilizes a novel variational graph autoencoder model integrated with graph attention networks to aggregate neighbor information and learn the distribution of the low-dimensional representations of cells, and adaptively determines the model training iterations for various datasets. Finally, the obtained low-dimensional representations of cells are clustered using kmeans. Experiments on nine public datasets show that scVGATAE outperforms classical and state-of-the-art clustering methods.

    Keywords: graph attention networks; scRNA-seq; unsupervised clustering; variational graph autoencoder.

    Keywords:single-cell rna-seq data; clustering

    单细胞 RNA 测序(scRNA-seq)现在是一种成功的技术,用于识别细胞异质性、揭示新的细胞亚群并预测发育轨迹。scRNA-seq 中的一个关键组成部分是精确地识别细胞亚群。尽管已经开发了许多无监督聚类方法来对细胞亚群进行聚类,但这些方法的性能容易受到 dropout、高维性和技术噪声的影响。此外,大多数现有的方法耗时较长,并且未能充分考虑细胞之间的潜在关联性。在本文中,我们提出了一种新的无监督聚类方法 scVGATAE(Single-cell Variational Graph Attention Autoencoder),用于 scRNA-seq 数据。该方法通过网络去噪构建可靠的细胞图,利用一种结合了图注意力网络的新型变分图自编码器模型来聚合邻居信息并学习低维表示的分布,并根据不同的数据集自适应地确定模型训练迭代次数。最后,使用 k-means 对得到的细胞低维表示进行聚类。在九个公共数据集上的实验表明,scVGATAE 的表现优于经典和最新的聚类方法。

    关键词:图注意力网络;scRNA-seq;无监督聚类;变分图自编码器。

    关键词:变分图注意力自编码器; 单细胞RNA测序数据; 聚类

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Biology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Biology-basel

    缩写:

    ISSN:N/A

    e-ISSN:2079-7737

    IF/分区:3.5/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data