Single-cell RNA sequencing (scRNA-seq) is widely used to study cellular heterogeneity in different samples. However, due to technical deficiencies, dropout events often result in zero gene expression values in the gene expression matrix. In this paper, we propose a new imputation method called scCAN, based on adaptive neighborhood clustering, to estimate the zero value of dropouts. Our method continuously updates cell-cell similarity information by simultaneously learning similarity relationships, clustering structures, and imposing new rank constraints on the Laplacian matrix of the similarity matrix, improving the imputation of dropout zero values. To evaluate the performance of this method, we used four simulated and eight real scRNA-seq data for downstream analyses, including cell clustering, recovered gene expression, and reconstructed cell trajectories. Our method improves the performance of the downstream analysis and is better than other imputation methods.
IEEE/ACM transactions on computational biology and bioinformatics. 2024 Jan-Feb;21(1):95-105. doi: 10.1109/TCBB.2023.3337231 Q13.42025
scCAN: Clustering With Adaptive Neighbor-Based Imputation Method for Single-Cell RNA-Seq Data
scCAN:具有自适应邻居插值方法的单细胞RNA测序数据聚类分析 翻译改进
作者单位 +展开
作者单位
DOI: 10.1109/TCBB.2023.3337231 PMID: 38285569
摘要 Ai翻译
Keywords:Single-Cell RNA-Seq Data; clustering
关键词:单细胞RNA测序数据; 聚类
相关内容
-
scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data
基于变分图注意力自编码模型的单细胞RNA测序数据聚类方法
Biology. 2024 Sep 11;13(9):713.
-
Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data
结合全局约束概念因子分解和正则化高斯图形模型的单细胞RNA序列数据聚类方法
Interdisciplinary sciences, computational life sciences. 2024 Mar;16(1):1-15.
-
Challenges in unsupervised clustering of single-cell RNA-seq data
单细胞RNA测序数据无监督聚类的挑战
Nature reviews. Genetics. 2019 May;20(5):273-282.
-
FlowGrid enables fast clustering of very large single-cell RNA-seq data
FlowGrid加速非常大的单细胞RNA测序数据的快速聚类
Bioinformatics (Oxford, England). 2021 Dec 22;38(1):282-283.
-
SC3: consensus clustering of single-cell RNA-seq data
scRNA-seq数据的共识聚类(SC3)
Nature methods. 2017 May;14(5):483-486.
-
SAIC: an iterative clustering approach for analysis of single cell RNA-seq data
SAIC:单细胞RNA序列数据分析的迭代聚类方法
BMC genomics. 2017 Oct 3;18(Suppl 6):689.
-
scFseCluster: a feature selection-enhanced clustering for single-cell RNA-seq data
基于特征选择增强的单细胞RNA序列数据聚类方法(scFseCluster)
Life science alliance. 2023 Oct 3;6(12):e202302103.
-
Single-cell RNA-seq data clustering: A survey with performance comparison study
单细胞RNA-seq数据聚类:性能比较研究综述
Journal of bioinformatics and computational biology. 2020 Aug;18(4):2040005.