首页 正文

World journal of gastroenterology. 2025 May 7;31(17):106592. doi: 10.3748/wjg.v31.i17.106592 Q15.42025

Illuminating the black box: Machine learning enhances preoperative prediction in intrahepatic cholangiocarcinoma

开启黑箱:机器学习提高术前预测肝内胆管癌的能力 翻译改进

Eyad Gadour  1  2, Mohammed S AlQahtani  1  3

作者单位 +展开

作者单位

  • 1 Multiorgan Transplant Centre of Excellence, Liver Transplantation Unit, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia.
  • 2 Internal Medicine, Faculty of Medicine, Zamzam University College, Khartoum North 11113, Khartoum, Sudan. eyadgadour@doctors.org.uk.
  • 3 Department of Surgery, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
  • DOI: 10.3748/wjg.v31.i17.106592 PMID: 40521263

    摘要 中英对照阅读

    The study by Huang et al, published in the World Journal of Gastroenterology, advances intrahepatic cholangiocarcinoma (ICC) management by developing a machine-learning model to predict textbook outcomes (TO) based on preoperative factors. By analyzing data from 376 patients across four Chinese medical centers, the researchers identified key variables influencing TO, including Child-Pugh classification, Eastern Cooperative Oncology Group score, hepatitis B status, and tumor size. The model, created using logistic regression and the extreme gradient boosting algorithm, demonstrated high predictive accuracy, with area under the curve values of 0.8825 for internal validation and 0.8346 for external validation. The integration of the Shapley additive explanation technique enhances the interpretability of the model, which is crucial for clinical decision-making. This research highlights the potential of machine learning to improve surgical planning and patient outcomes in ICC, opening possibilities for personalized treatment approaches based on individual patient characteristics and risk factors.

    Keywords: Clinical decision-making; Disease-free survival; Extreme gradient boosting; Intrahepatic cholangiocarcinoma; Machine learning; Predictive model; Preoperative assessment; Shapley additive explanations; Surgical outcomes; Textbook outcome.

    Keywords:machine learning; preoperative prediction

    黄等人发表在《世界胃肠病学杂志》上的研究通过开发一种基于术前因素预测标准治疗结果(TO)的机器学习模型,推进了肝内胆管癌(ICC)的管理。通过对来自中国四家医疗机构的376名患者的资料进行分析,研究人员确定了一些影响TO的关键变量,包括Child-Pugh分类、东部肿瘤协作组评分、乙型肝炎状态和肿瘤大小。该模型使用逻辑回归和极端梯度提升算法创建,并在内部验证中表现出较高的预测准确性(AUC值为0.8825),外部验证的AUC值为0.8346。通过整合Shapley加法解释技术,增强了模型的可解释性,在临床决策制定中这一点至关重要。这项研究突显了机器学习在改善ICC手术规划和患者预后方面的潜力,并为进一步根据个体患者的特征和风险因素进行个性化治疗方案提供了可能。

    关键词:临床决策;无病生存期;极端梯度提升;肝内胆管癌;机器学习;预测模型;术前评估;Shapley加法解释;手术结果;标准治疗结果。

    关键词:机器学习; 术前预测; 肝内胆管癌

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © World journal of gastroenterology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:World journal of gastroenterology

    缩写:WORLD J GASTROENTERO

    ISSN:1007-9327

    e-ISSN:2219-2840

    IF/分区:5.4/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Illuminating the black box: Machine learning enhances preoperative prediction in intrahepatic cholangiocarcinoma