首页 正文

Review Current oncology reports. 2025 Jun 12. doi: 10.1007/s11912-025-01688-w Q15.02025

Emerging Trends in Artificial Intelligence in Neuro-Oncology

神经肿瘤学中人工智能的新兴趋势 翻译改进

Saahil Chadha  1  2, Durga V Sritharan  1  2, Thomas Hager  1  2, Rahul D'Souza  1, Sanjay Aneja  3  4  5  6  7

作者单位 +展开

作者单位

  • 1 Department of Therapeutic Radiology, Yale School of Medicine, 330 Cedar St, New Haven, CT, 06519, USA.
  • 2 Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, 06510, USA.
  • 3 Department of Therapeutic Radiology, Yale School of Medicine, 330 Cedar St, New Haven, CT, 06519, USA. sanjay.aneja@yale.edu.
  • 4 Center for Outcomes Research and Evaluation, Yale New Haven Hospital, New Haven, CT, 06510, USA. sanjay.aneja@yale.edu.
  • 5 Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, 06510, USA. sanjay.aneja@yale.edu.
  • 6 Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. sanjay.aneja@yale.edu.
  • 7 Yale Cancer Center, New Haven, CT, 06510, USA. sanjay.aneja@yale.edu.
  • DOI: 10.1007/s11912-025-01688-w PMID: 40504358

    摘要 中英对照阅读

    Purpose of review: This article explores the evolving role of artificial intelligence (AI) in neuro-oncology, highlighting its potential to enhance diagnostic accuracy, predict patient outcomes, optimize treatment planning, and streamline clinical workflows.

    Recent findings: AI applications have led to significant advancements in automated tumor segmentation, molecular classification, risk stratification, treatment response evaluation, and computational pathology. AI-driven innovations have also accelerated drug discovery and leveraged natural language processing to generate structured clinical reports and extract actionable insights from unstructured data. AI has transformative potential in neuro-oncology; however, challenges like data quality, model generalizability, and clinical integration persist. Overcoming these barriers may involve new computational techniques and hardware efficiencies, as well as raising awareness, fostering interdisciplinary education, and expanding access to AI-driven tools.

    Keywords: Artificial intelligence; Brain metastasis; Computational pathology; Deep learning; Glioma; Natural language processing.

    Keywords:Artificial intelligence; neuro-oncology; emerging trends

    回顾目的: 本文探讨了人工智能(AI)在神经肿瘤学中的角色演变,强调其提高诊断准确性、预测患者预后、优化治疗计划和简化临床工作流程的潜力。

    最近发现: 人工智能的应用已经导致自动化肿瘤分割、分子分类、风险分层、治疗反应评估以及计算病理学方面的重大进展。由AI驱动的创新还加速了药物发现,并利用自然语言处理生成结构化的临床报告,从非结构化数据中提取可操作的见解。尽管如此,在神经肿瘤学领域,人工智能具有变革潜力;然而,诸如数据质量、模型泛化能力及临床整合等挑战仍然存在。克服这些障碍可能需要新的计算技术和硬件效率改进,以及提高意识、促进跨学科教育和扩大对AI驱动工具的访问。

    关键词: 人工智能;脑转移;计算病理学;深度学习;胶质瘤;自然语言处理。

    关键词:人工智能; 神经肿瘤学; 新兴趋势

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Current oncology reports. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Current oncology reports

    缩写:CURR ONCOL REP

    ISSN:1523-3790

    e-ISSN:1534-6269

    IF/分区:5.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Emerging Trends in Artificial Intelligence in Neuro-Oncology