The advanced maternal age is strongly correlated with a notable decline in oocyte quality, yet definitive and effective strategies to enhance it remain incompletely identified. In this study, we reported that near-infrared light, administered in vitro, efficaciously improves the quality of post-ovulatory aging (POA) and reproductive aged oocytes by recovering mitochondrial activity. Near-infrared light has the capacity to ameliorate abnormalities in mitochondrial membrane potential, optimize mitochondrial distribution, augment ATP synthesis, and modulate the expression of mitochondrial-related genes. It can consequently enhance the quality of oocytes by reducing the reactive oxygen species (ROS) level, improving the abnormal distribution of spindles and maintaining the fertilization ability. Moreover, transcriptome analysis also shows that the beneficial effect of near-infrared light on POA and reproductive aged oocytes is mediated by restoration of mitochondrial function. Collectively, our data reveal that the near-infrared light treatment, especially of 810 nm or 950 nm with a cumulative dosage of 1.5 J*cm-2, is a feasible approach to protect oocytes from POA and reproductive aged deterioration, contributing to the improvement of reproductive outcomes of aged women and assisted reproductive technology.
Keywords: Embryo development; Mitochondrial activity; Near-infrared light; Oocyte quality; Post-ovulatory aging oocytes.
© The Author(s) 2025. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.