The oleaginous yeast Rhodotorula toruloides is a promising microbial cell factory for the sustainable production of biofuels and value-added chemicals from renewable carbon sources. Unlike the conventional yeast Saccharomyces cerevisiae, R. toruloides can naturally metabolize xylose, the second most abundant sugar in lignocellulosic hydrolysates. However, its native xylose metabolism is inefficient, characterized by slow xylose uptake and accumulation of D-arabitol. Moreover, despite its phenotype, research on the enzymes involved in xylose metabolism has yet to reach a consensus. Therefore, this review provides a comprehensive analysis of the non-canonical xylose metabolism in R. toruloides, focusing on the properties of key enzymes involved in xylose metabolism. Native xylose reductase and xylitol dehydrogenase exhibit broad substrate promiscuity compared to their counterparts in the xylose-fermenting Scheffersomyces stipitis. Additionally, the absence of xylulokinase expression under xylose-utilizing conditions redirects metabolism toward D-arabitol accumulation. Consequently, D-arabitol dehydrogenases and ribulokinase play essential roles in the xylose metabolism of R. toruloides. These findings highlight the fundamental differences between R. toruloides xylose metabolism and the oxidoreductase pathways observed in other xylose-fermenting yeast, providing insights for metabolic engineering strategies to improve xylose utilization and enhance bioconversion of cellulosic hydrolysates to different bioproducts by R. toruloides.
© The Author(s) 2025. Published by Oxford University Press on behalf of FEMS.