首页 正文

FEMS yeast research. 2025 Jun 11:foaf029. doi: 10.1093/femsyr/foaf029 Q32.72025

Engineering of xylose metabolic pathways in Rhodotorula toruloides for sustainable biomanufacturing

工程改造解脂耶氏酵母木糖代谢途径用于可持续生物制造 翻译改进

Hyunjoon Oh  1  2, Hyun Gi Koh  3, Suk-Chae Jung  4, Qaunhui Ye  2  5, Sujit Sadashiv Jagtap  2  6, Christopher V Rao  2  6, Yong-Su Jin  1  2  5

作者单位 +展开

作者单位

  • 1 Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
  • 2 DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  • 3 Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea.
  • 4 Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • 5 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
  • 6 Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
  • DOI: 10.1093/femsyr/foaf029 PMID: 40498526

    摘要 中英对照阅读

    The oleaginous yeast Rhodotorula toruloides is a promising microbial cell factory for the sustainable production of biofuels and value-added chemicals from renewable carbon sources. Unlike the conventional yeast Saccharomyces cerevisiae, R. toruloides can naturally metabolize xylose, the second most abundant sugar in lignocellulosic hydrolysates. However, its native xylose metabolism is inefficient, characterized by slow xylose uptake and accumulation of D-arabitol. Moreover, despite its phenotype, research on the enzymes involved in xylose metabolism has yet to reach a consensus. Therefore, this review provides a comprehensive analysis of the non-canonical xylose metabolism in R. toruloides, focusing on the properties of key enzymes involved in xylose metabolism. Native xylose reductase and xylitol dehydrogenase exhibit broad substrate promiscuity compared to their counterparts in the xylose-fermenting Scheffersomyces stipitis. Additionally, the absence of xylulokinase expression under xylose-utilizing conditions redirects metabolism toward D-arabitol accumulation. Consequently, D-arabitol dehydrogenases and ribulokinase play essential roles in the xylose metabolism of R. toruloides. These findings highlight the fundamental differences between R. toruloides xylose metabolism and the oxidoreductase pathways observed in other xylose-fermenting yeast, providing insights for metabolic engineering strategies to improve xylose utilization and enhance bioconversion of cellulosic hydrolysates to different bioproducts by R. toruloides.

    Keywords:xylose metabolic pathways; Rhodotorula toruloides; sustainable biomanufacturing

    产油酵母Rhodotorula toruloides是一种有前景的微生物细胞工厂,可以从可再生碳源可持续生产生物燃料和高附加值化学品。与传统的酵母Saccharomyces cerevisiae不同,R. toruloides能够自然代谢木质纤维素水解液中含量第二丰富的糖——木糖。然而,其天然的木糖代谢效率较低,表现为木糖摄取缓慢和积累D-阿拉伯糖醇。此外,尽管有这种表型,关于参与木糖代谢的酶的研究尚未达成一致意见。因此,本综述对R. toruloides中非经典的木糖代谢进行了全面分析,重点介绍了参与木糖代谢的关键酶特性。与能够在木质纤维素发酵中利用木糖的Scheffersomyces stipitis相比,天然的木糖还原酶和木糖醇脱氢酶表现出更广泛的底物专一性。此外,在利用木糖条件下没有表达木酮糖激酶使得代谢转向D-阿拉伯糖醇积累。因此,D-阿拉伯糖醇脱氢酶和核糖-5-磷酸激酶在R. toruloides的木糖代谢中起着关键作用。这些发现突显了R. toruloides中的木糖代谢与其他能够发酵木糖酵母观察到的氧化还原途径之间的基本差异,为改进木糖利用和通过R. toruloides将纤维素水解液生物转化成不同生物产品的代谢工程策略提供了见解。

    关键词:木糖代谢途径; 红球菌; 可持续生物制造

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © FEMS yeast research. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Fems yeast research

    缩写:FEMS YEAST RES

    ISSN:1567-1356

    e-ISSN:1567-1364

    IF/分区:2.7/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Engineering of xylose metabolic pathways in Rhodotorula toruloides for sustainable biomanufacturing