首页 正文

Annales Henri Poincare. 2025;26(6):2279-2291. doi: 10.1007/s00023-025-01552-4 Q31.32025

Almost Sure GOE Fluctuations of Energy Levels for Hyperbolic Surfaces of High Genus

具高亏格双曲面上能量级的几乎确定GOE波动性质 翻译改进

Zeév Rudnick  1, Igor Wigman  2

作者单位 +展开

作者单位

  • 1 School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.
  • 2 Department of Mathematics, King's College London, London, UK.
  • DOI: 10.1007/s00023-025-01552-4 PMID: 40475834

    摘要 中英对照阅读

    We study the variance of a linear statistic of the Laplace eigenvalues on a hyperbolic surface, when the surface varies over the moduli space of all surfaces of fixed genus, sampled at random according to the Weil-Petersson measure. The ensemble variance of the linear statistic was recently shown to coincide with that of the corresponding statistic in the Gaussian orthogonal ensemble (GOE) of random matrix theory, in the double limit of first taking large genus and then shrinking size of the energy window. In this note, we show that in this same limit, the (smooth) energy variance for a typical surface is close to the GOE result, a feature called "ergodicity" in the random matrix theory literature.

    Keywords:almost sure fluctuations; energy levels; hyperbolic surfaces; high genus

    我们研究了双曲表面上拉普拉斯本征值的线性统计量方差,当该表面在固定亏格的所有表面模空间中随机采样时(根据Weil-Petersson度量)。最近已经证明,在先取大亏格然后缩小能量窗口大小的双重极限下,这种集合体方差与对应的高斯正交系综(GOE)中的方差一致。在这篇简短的文章中,我们展示了在这种相同的极限情况下,对于典型的表面平滑的能量方差接近于GOE的结果,这一特性在随机矩阵理论文献中被称为“遍历性”。

    关键词:几乎处处波动; 能级; 双曲表面; 高亏格

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Annales Henri Poincare. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Annales henri poincare

    缩写:ANN HENRI POINCARE

    ISSN:1424-0637

    e-ISSN:1424-0661

    IF/分区:1.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Almost Sure GOE Fluctuations of Energy Levels for Hyperbolic Surfaces of High Genus