首页 正文

Journal of biomedical informatics. 2025 Jun 2:104852. doi: 10.1016/j.jbi.2025.104852 Q24.02024

Multi-view based heterogeneous graph contrastive learning for drug-target interaction prediction

基于多视图的异构图对比学习的药物-目标相互作用预测 翻译改进

Chao Li  1, Lichao Zhang  2, Guoyi Sun  2, Lingtao Su  3

作者单位 +展开

作者单位

  • 1 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qinwangang Road No. 579, Huangdao District, Qing Dao, 266590, Shandong, China. Electronic address: lichao@sdust.edu.cn.
  • 2 College of Electronic and Information Engineering, Shandong University of Science and Technology, Qinwangang Road No. 579, Huangdao District, Qing Dao, 266590, Shandong, China.
  • 3 College of Computer Science and Engineering, Shandong University of Science and Technology, Qinwangang Road No. 579, Huangdao District, Qing Dao, 266590, Shandong, China.
  • DOI: 10.1016/j.jbi.2025.104852 PMID: 40466979

    摘要 中英对照阅读

    Drug-Target Interaction (DTI) prediction plays a pivotal role in accelerating drug discovery and development by identifying novel interactions between drugs and targets. Most previous studies on Drug-Protein Pair (DPP) networks have primarily focused on learning their topological structures. However, two key challenges remain: the integration of topological and semantic information is often insufficient, and the representation diversity may be diminished during graph convolution operations, affecting the expressiveness of learned features. To address the above challenges, we propose a novel paradigm named Multi-view Based Heterogeneous Graph Contrastive Learning for Drug-Target Interaction Prediction (HGCML-DTI). Specifically, we initially establish a drug-protein heterogeneous graph, followed by employing a weighted Graph Convolutional Network (GCN) to derive vector representations for both drug and protein nodes. Subsequently, we individually construct the topology and semantic graphs for DPP and integrate them to form a unified public graph. A multi-channel graph neural network is employed to learn DPP representations. To preserve representation diversity and enhance discriminative ability, a multi-view contrastive learning strategy is introduced. Then, a Multilayer Perceptron (MLP) neural network is used to recognize DTI. To prove the effectiveness of this work, extensive experiments are conducted on six real-world datasets, and comparisons are made with seven competitive baselines. The results demonstrate that the proposed HGCML-DTI significantly outperforms state-of-the-art methods. This work highlights the importance of combining multi-view learning and contrastive strategies to advance the field of DTI prediction. Source codes are available at https://github.com/7A13/HGCML-DTI.

    Keywords: Contrastive multi-view learning; Drug-target interaction prediction; Heterogeneous graph.

    Keywords:multi-view based; heterogeneous graph; contrastive learning

    药物-靶点相互作用(DTI)预测通过识别药物和靶点之间的新型相互作用,在加速药物发现和发展中发挥着重要作用。以往关于药物-蛋白质对(DPP)网络的研究主要集中在学习它们的拓扑结构上。然而,仍存在两个关键挑战:将拓扑信息与语义信息充分结合往往不够,并且在图卷积操作期间节点表示多样性的减少可能影响学到特征的表现力。为了解决上述问题,我们提出了一种名为多视图基异构图对比学习药物-靶点相互作用预测(HGCML-DTI)的新范式。具体而言,我们首先建立了一个药物-蛋白质异构图,并采用加权图卷积网络(GCN)来推导药物和蛋白质节点的向量表示。随后,分别构建DPP的拓扑图和语义图并整合为一个统一的公共图。使用多通道图神经网络学习DPP表示。为了保持表示多样性并增强区分能力,引入了一种多视图对比学习策略。然后,利用多层感知器(MLP)神经网络来识别DTI。为了证明这项工作的有效性,在六个真实世界的数据集上进行了广泛的实验,并与七个竞争的基线方法进行了比较。结果表明,所提出的HGCML-DTI显著优于现有最先进的方法。此工作强调了结合多视图学习和对比策略在推进DTI预测领域的关键作用。源代码可从https://github.com/7A13/HGCML-DTI获得。

    关键词: 对比多视图学习;药物-靶点相互作用预测;异构图。

    关键词:多视图基方法; 异质图; 对比学习; 药物靶点相互作用预测

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of biomedical informatics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of biomedical informatics

    缩写:J BIOMED INFORM

    ISSN:1532-0464

    e-ISSN:1532-0480

    IF/分区:4.0/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Multi-view based heterogeneous graph contrastive learning for drug-target interaction prediction