首页 正文

Computers in biology and medicine. 2025 Jan:184:109403. doi: 10.1016/j.compbiomed.2024.109403 Q17.02024

Deep multiple instance learning on heterogeneous graph for drug-disease association prediction

基于异构图的深度多示例学习的药物-疾病关联预测方法研究 翻译改进

Yaowen Gu  1, Si Zheng  2, Bowen Zhang  3, Hongyu Kang  4, Rui Jiang  5, Jiao Li  6

作者单位 +展开

作者单位

  • 1 Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Department of Chemistry, New York University, NY, 10027, USA. Electronic address: yg3191@nyu.edu.
  • 2 Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Institute for Artificial Intelligence, Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, 100084, China.
  • 3 Beijing StoneWise Technology Co Ltd., Beijing, 100080, China.
  • 4 Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China.
  • 5 Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.
  • 6 Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China. Electronic address: li.jiao@imicams.ac.cn.
  • DOI: 10.1016/j.compbiomed.2024.109403 PMID: 39577348

    摘要 中英对照阅读

    Drug repositioning offers promising prospects for accelerating drug discovery by identifying potential drug-disease associations (DDAs) for existing drugs and diseases. Previous methods have generated meta-path-augmented node or graph embeddings for DDA prediction in drug-disease heterogeneous networks. However, these approaches rarely develop end-to-end frameworks for path instance-level representation learning as well as the further feature selection and aggregation. By leveraging the abundant topological information in path instances, more fine-grained and interpretable predictions can be achieved. To this end, we introduce deep multiple instance learning into drug repositioning by proposing a novel method called MilGNet. MilGNet employs a heterogeneous graph neural network (HGNN)-based encoder to learn drug and disease node embeddings. Treating each drug-disease pair as a bag, we designed a special quadruplet meta-path form and implemented a pseudo meta-path generator in MilGNet to obtain multiple meta-path instances based on network topology. Additionally, a bidirectional instance encoder enhances the representation of meta-path instances. Finally, MilGNet utilizes a multi-scale interpretable predictor to aggregate bag embeddings with an attention mechanism, providing predictions at both the bag and instance levels for accurate and explainable predictions. Comprehensive experiments on five benchmarks demonstrate that MilGNet significantly outperforms ten advanced methods. Notably, three case studies on one drug (Methotrexate) and two diseases (Renal Failure and Mismatch Repair Cancer Syndrome) highlight MilGNet's potential for discovering new indications, therapies, and generating rational meta-path instances to investigate possible treatment mechanisms. The source code is available at https://github.com/gu-yaowen/MilGNet.

    Keywords: Drug repositioning; Drug–disease association prediction; Heterogeneous graph neural network; Meta-path; Multiple instance learning.

    Keywords:heterogeneous graph

    药物再定位通过识别现有药物和疾病之间的潜在药物-疾病关联(DDA),为加速药物发现提供了有前景的前景。先前的方法在包含药物和疾病的异构网络中生成了元路径增强的节点或图嵌入,以进行DDA预测。然而,这些方法很少开发端到端框架来进行路径实例级别的表示学习以及进一步的特征选择和聚合。通过利用路径实例中的丰富拓扑信息,可以实现更细粒度和可解释性的预测。为此,我们通过提出一种称为MilGNet的新方法将深度多示例学习引入药物再定位中。MilGNet采用基于异构图神经网络(HGNN)的编码器来学习药物和疾病节点嵌入。将每个药物-疾病对视为一个包,在MilGNet中设计了一种特殊的四元组元路径形式,并实现了一个伪元路径生成器以根据网络拓扑获得多个元路径实例。此外,双向实例编码器增强了元路径实例的表示能力。最后,MilGNet利用多尺度可解释预测器通过注意力机制聚合包嵌入,从而在包和实例级别提供准确且可解释性的预测。在五个基准数据集上的全面实验表明,MilGNet显著优于十种先进方法。值得注意的是,针对一种药物(甲氨蝶呤)以及两种疾病(肾功能衰竭和错配修复癌症综合征)的三个案例研究突显了MilGNet发现新适应症、治疗方案并生成合理的元路径实例以调查可能的治疗机制的潜力。

    关键词: 药物再定位;药物-疾病关联预测;异构图神经网络;元路径;多示例学习。

    关键词:深度多重实例学习; 异构图; 药物-疾病关联预测

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Computers in biology and medicine. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Computers in biology and medicine

    缩写:COMPUT BIOL MED

    ISSN:0010-4825

    e-ISSN:1879-0534

    IF/分区:7.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Deep multiple instance learning on heterogeneous graph for drug-disease association prediction