首页 正文

Review Medical & biological engineering & computing. 2025 Jun 2. doi: 10.1007/s11517-025-03384-0 Q32.62024

Auxiliary classifier adversarial networks with maximum subdomain discrepancy for EEG-based emotion recognition

具有最大子域差异的辅助分类器对抗网络在基于EEG的情绪识别中的应用 翻译改进

Zhaowen Xiao  1, Qingshan She  2  3, Feng Fang  4, Ming Meng  5  6, Yingchun Zhang  7

作者单位 +展开

作者单位

  • 1 HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, 310018, China.
  • 2 School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China. qsshe@hdu.edu.cn.
  • 3 Department of Critical Care Medicine, Wenzhou Central Hospital, Wenzhou, 325000, China. qsshe@hdu.edu.cn.
  • 4 Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
  • 5 School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
  • 6 Department of Critical Care Medicine, Wenzhou Central Hospital, Wenzhou, 325000, China.
  • 7 Department of Biomedical Engineering, Desai Sethi Urology Institute and Miami Project to Cure Paralysis at the University of Miami, Coral Gables, FL, 33146, USA.
  • DOI: 10.1007/s11517-025-03384-0 PMID: 40457127

    摘要 中英对照阅读

    Domain adaptation (DA) is considered to be effective solutions for unsupervised emotion recognition cross-session and cross-subject tasks based on electroencephalogram (EEG). However, the cross-domain shifts caused by individual differences and sessions differences seriously limit the generalization ability of existing models. Moreover, existing models often overlook the discrepancies among task-specific subdomains. In this study, we propose the auxiliary classifier adversarial networks (ACAN) to tackle these two key issues by aligning global domains and subdomains and maximizing subdomain discrepancies to enhance model effectiveness. Specifically, to address cross-domain discrepancies, we deploy a domain alignment module in the feature space to reduce inter-domain and inter-subdomain discrepancies. Meanwhile, to maximum subdomain discrepancies, the auxiliary adversarial classifier is introduced to generate distinguishable subdomain features by promoting adversarial learning between feature extractor and auxiliary classifier. System experiment results on three benchmark databases (SEED, SEED-IV, and DEAP) validate the model's effectiveness and superiority in cross-session and cross-subject experiments. The method proposed in this study outperforms other state-of-the-art DA, that effectively address domain shifts in multiple emotion recognition tasks, and promote the development of brain-computer interfaces.

    Keywords: Adversarial learning; Domain adaptation; Electroencephalogram; Emotion recognition.

    Keywords:maximum subdomain discrepancy; eeg-based emotion recognition

    领域适应(DA)被认为是基于脑电图(EEG)的跨会话和跨受试者情感识别任务的有效解决方案。然而,由于个体差异和会话差异导致的跨域偏移严重限制了现有模型的泛化能力。此外,现有的模型往往忽略了特定任务子域之间的差异。在这项研究中,我们提出了辅助分类对抗网络(ACAN),通过对齐全局领域和子领域并最大化子领域的差异来解决这两个关键问题,以增强模型的有效性。具体来说,为了处理跨域差异,我们在特征空间中部署了一个领域对齐模块,以减少不同领域和不同子领域之间的差异。同时,为最大限度地增加子领域的差异,引入了辅助对抗分类器,通过促进特征提取器与辅助分类器之间的对抗学习来生成可区分的子领域特征。在三个基准数据库(SEED、SEED-IV 和 DEAP)上的系统实验结果验证了该模型在跨会话和跨受试者实验中的有效性和优越性。本研究提出的方法优于其他最先进的 DA 方法,有效地解决了多个情感识别任务中的领域偏移问题,并促进了脑机接口的发展。

    关键词:对抗学习;领域适应;脑电图;情感识别。

    关键词:辅助分类器对抗网络; 最大子域差异; eeg-Based情绪识别

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Medical & biological engineering & computing. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Medical & biological engineering & computing

    缩写:MED BIOL ENG COMPUT

    ISSN:0140-0118

    e-ISSN:1741-0444

    IF/分区:2.6/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Auxiliary classifier adversarial networks with maximum subdomain discrepancy for EEG-based emotion recognition