首页 正文

Cognitive neurodynamics. 2024 Apr;18(2):405-416. doi: 10.1007/s11571-023-10004-w Q23.12024

EEG-based emotion recognition using a temporal-difference minimizing neural network

基于时间差最小化神经网络的脑电情绪识别 翻译改进

Xiangyu Ju  1, Ming Li  1, Wenli Tian  1, Dewen Hu  1

作者单位 +展开

作者单位

  • 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
  • DOI: 10.1007/s11571-023-10004-w PMID: 38699602

    摘要 Ai翻译

    Electroencephalogram (EEG) emotion recognition plays an important role in human-computer interaction. An increasing number of algorithms for emotion recognition have been proposed recently. However, it is still challenging to make efficient use of emotional activity knowledge. In this paper, based on prior knowledge that emotion varies slowly across time, we propose a temporal-difference minimizing neural network (TDMNN) for EEG emotion recognition. We use maximum mean discrepancy (MMD) technology to evaluate the difference in EEG features across time and minimize the difference by a multibranch convolutional recurrent network. State-of-the-art performances are achieved using the proposed method on the SEED, SEED-IV, DEAP and DREAMER datasets, demonstrating the effectiveness of including prior knowledge in EEG emotion recognition.

    Keywords: EEG; Emotion recognition; Maximum mean discrepancy; Temporal-difference minimizing neural network.

    Keywords:eeg-based emotion recognition

    Copyright © Cognitive neurodynamics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Cognitive neurodynamics

    缩写:COGN NEURODYNAMICS

    ISSN:1871-4080

    e-ISSN:1871-4099

    IF/分区:3.1/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    EEG-based emotion recognition using a temporal-difference minimizing neural network