首页 正文

Applications in plant sciences. 2025 Feb 13;13(2):e70000. doi: 10.1002/aps3.70000 Q22.42025

Enhancing plant morphological trait identification in herbarium collections through deep learning-based segmentation

基于深度学习的分割在标本馆收藏中增强植物形态特征识别 翻译改进

Hanane Ariouat  1, Youcef Sklab  1, Edi Prifti  1  2, Jean-Daniel Zucker  1  2, Eric Chenin  1

作者单位 +展开

作者单位

  • 1 Institut de Recherche pour le Développement (IRD) Sorbonne Université UMMISCO, F-93143, Bondy France.
  • 2 Sorbonne Université, INSERM, Nutrition et Obesities: Systemic approaches, NutriOmique, AP-HP, Hôpital Pitié-Salpêtrière France.
  • DOI: 10.1002/aps3.70000 PMID: 40308899

    摘要 中英对照阅读

    Premise: Deep learning has become increasingly important in the analysis of digitized herbarium collections, which comprise millions of scans that provide valuable resources for studying plant evolution and biodiversity. However, leveraging deep learning algorithms to analyze these scans presents significant challenges, partly due to the heterogeneous nature of the non-plant material that forms the background of the scans. We hypothesize that removing such backgrounds can improve the performance of these algorithms.

    Methods: We propose a novel method based on deep learning to segment and generate plant masks from herbarium scans and subsequently remove the non-plant backgrounds. The semi-automatic preprocessing stages involve the identification and removal of non-plant elements, substantially reducing the manual effort required to prepare the training dataset.

    Results: The results highlight the importance of effective image segmentation, which achieved an F1 score of up to 96.6%. Moreover, when used in classification models for plant morphological trait identification, the images resulting from segmentation improved classification accuracy by up to 3% and F1 score by up to 7% compared to non-segmented images.

    Discussion: Our approach isolates plant elements in herbarium scans by removing background elements to improve classification tasks. We demonstrate that image segmentation significantly enhances the performance of plant morphological trait identification models.

    Keywords: deep learning; herbarium scans; semantic segmentation; trait classification.

    Keywords:plant morphological traits; deep learning; segmentation; herbarium collections

    前提: 深度学习在数字化标本馆藏的分析中变得越来越重要,这些馆藏包含数百万张扫描图像,提供了研究植物进化和生物多样性的重要资源。然而,利用深度学习算法来分析这些扫描图像面临着重大挑战,部分原因是构成背景的非植物材料异质性很强。我们假设去除这样的背景可以提高这些算法的表现。

    方法: 我们提出了一种基于深度学习的新方法,用于从标本馆藏的扫描图中分割并生成植物掩模,并随后移除非植物背景。半自动预处理阶段包括识别和移除非植物元素,大大减少了准备训练数据集所需的手动工作量。

    结果: 结果显示有效的图像分割至关重要,实现了高达96.6%的F1分数。此外,在用于植物形态特征识别的分类模型中使用这些经过分割后的图像时,与未经分割的图像相比,分类准确率提高了最多3%,F1分数提高了最多7%。

    讨论: 我们的方法通过移除背景元素来隔离标本馆藏扫描图中的植物成分,从而改善了分类任务。我们证明,图像分割显著增强了植物形态特征识别模型的表现。

    关键词: 深度学习;标本馆藏扫描;语义分割;特征分类。

    关键词:植物形态特征; 深度学习; 分割; 标本馆藏品

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Applications in plant sciences. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Applications in plant sciences

    缩写:APPL PLANT SCI

    ISSN:2168-0450

    e-ISSN:2168-0450

    IF/分区:2.4/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Enhancing plant morphological trait identification in herbarium collections through deep learning-based segmentation