首页 正文

APL bioengineering. 2025 Apr 22;9(2):026108. doi: 10.1063/5.0263191 Q16.62024

Post-stroke spontaneous motor recovery in mice can be predicted from acute-phase local field potential using machine learning

机器学习预测小鼠急性期局部场电位介导的卒中后自发性运动恢复 翻译改进

Nicolò Meneghetti, Michael Lassi, Verediana Massa  1, Silvestro Micera, Alberto Mazzoni, Claudia Alia  1, Andrea Bandini

作者单位 +展开

作者单位

  • 1 CNR Neuroscience Institute, Pisa, Italy.
  • DOI: 10.1063/5.0263191 PMID: 40270920

    摘要 中英对照阅读

    Stroke remains a leading cause of long-term disability, underscoring the urgent need for effective predictors of motor recovery. Understanding the electrophysiological changes underlying spontaneous recovery could offer critical insight into recovery mechanisms and aid in predicting individual rehabilitation trajectories. In this study, we investigated the predictive power of local field potentials recorded 2 days post-stroke to forecast 1 month motor recovery in a mouse model of ischemic stroke. By employing a comprehensive machine learning approach, we identified key electrophysiological features that significantly enhanced prediction accuracy. Through nested leave-one-animal-out cross-validation, we achieved high prediction accuracy, correctly identifying motor recovery status in 15 out of 16 mice. Our findings also revealed that pre-stroke brain activity did not contribute to prediction accuracy, suggesting that post-stroke dynamics are the primary determinants of recovery. Notably, we found that features from the contralesional hemisphere were particularly influential in predicting recovery outcomes, underscoring the critical role of the non-lesioned hemisphere in motor recovery. Our data-driven methodology underscores the importance of balancing feature selection to optimize predictive performance, particularly in the context of spontaneous recovery, where insight into natural recovery processes can guide the development of targeted rehabilitation strategies. Ultimately, our findings advocate for a deeper understanding of post-stroke brain dynamics to improve clinical outcomes for stroke patients.

    Keywords:post-stroke recovery; motor recovery; machine learning

    中风仍然是长期残疾的主要原因,强调了有效预测运动恢复的迫切需求。理解自发恢复背后的电生理变化可以为康复机制提供关键见解,并有助于预测个体康复轨迹。在这项研究中,我们调查了在缺血性中风小鼠模型中记录的中风后2天局部场位势对一个月后运动恢复预测的能力。通过采用全面的机器学习方法,我们识别出一些显著提高预测准确性的关键电生理特征。通过嵌套留一动物交叉验证(nested leave-one-animal-out cross-validation),我们在16只小鼠中有15只正确地预测了运动恢复状态。我们的研究结果还显示,中风前的大脑活动对预测准确性没有贡献,表明中风后的动力学是恢复的主要决定因素。值得注意的是,我们发现来自病灶对侧半球的特征在预测恢复结果方面特别有影响力,这突显了非受损半球在运动恢复中的关键作用。我们的数据驱动的方法强调了平衡特征选择以优化预测性能的重要性,特别是在自发恢复的情况下,了解自然恢复过程可以指导靶向康复策略的发展。最终,我们的研究结果提倡深入理解中风后的脑动力学,从而改善中风患者的临床结局。

    © 2025 Author(s).

    关键词:卒中后恢复; 运动恢复; 机器学习

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © APL bioengineering. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Apl bioengineering

    缩写:

    ISSN:2473-2877

    e-ISSN:

    IF/分区:6.6/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Post-stroke spontaneous motor recovery in mice can be predicted from acute-phase local field potential using machine learning