Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges due to its dense stromal environment, which impedes treatment efficacy. Recent molecular and phenotypic analyses have enhanced our understanding of PDAC, driving the development of targeted therapies. Emerging research highlights the crucial role of the pancreatic tumor microbiome in PDAC initiation and progression. However, the specific mechanisms influencing the tumor microenvironment (TME) and systemic immunity remain incompletely understood. Studies have elucidated various genetic mutations, signaling pathways, and cellular interactions driving PDAC progression, aiding the development of targeted therapies. Despite these advances, overall survival rates for PDAC patients remain low, necessitating novel therapeutic strategies. Therapeutic strategies targeting the microbiome hold significant potential. Therapeutic strategies aimed at modulating microbiomes demonstrate significant potential for treating diseases and enhancing human well-being. Early research indicates that manipulating the microbiome could alter the TME to enhance the efficacy of existing treatments and lead to new therapeutic modalities. Modulating microbiomes might improve the delivery and effectiveness of chemotherapeutic agents or sensitize the tumor to immunotherapy, potentially revolutionizing PDAC treatment paradigms. Microbes can indirectly contribute to pancreatic cancer by inducing chronic inflammation and immune dysregulation. Microbes create a pro-inflammatory environment conducive to cancer development. This persistent inflammation can lead to genetic mutations and a suppressed immune response, fostering an environment where cancer cells can thrive. This review synthesizes current evidence on how the microbiome influences PDAC development and progression, emphasizing its potential for early disease detection and novel therapeutic strategies. Early detection, particularly in premalignant conditions such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN), is crucial for improving patient outcomes through timely intervention.
Keywords: Chronic inflammation; Early detection; Immunotherapy; Microbiome; Pancreatic ductal adenocarcinoma (PDAC); Targeted therapies.; Tumor microenvironment (TME).
Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.