首页 正文

Aging cell. 2025 Apr 9:e70057. doi: 10.1111/acel.70057 Q18.02024

Causal Analysis Between Gut Microbes, Aging Indicator, and Age-Related Disease, Involving the Discovery and Validation of Biomarkers

关于肠道微生物、衰老标志物和与年龄相关疾病之间因果分析的研究,包括生物标志物的发现和验证 翻译改进

Chunrong Lu  1, Xiaojun Wang  1  2, Xiaochun Chen  1  2, Tao Qin  1, Pengpeng Ye  1  2, Jianqun Liu  1, Shuai Wang  1  3, Weifei Luo  1  2

作者单位 +展开

作者单位

  • 1 AIage Life Science Corporation Ltd., Guangxi Free Trade Zone, Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China.
  • 2 Guangxi Key Laboratory of Longevity Science and Technology, Nanning, Guangxi, P.R. China.
  • 3 State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, Gansu, China.
  • DOI: 10.1111/acel.70057 PMID: 40202110

    摘要 中英对照阅读

    The influence of gut microbes on aging has been reported in several studies, but the mediating pathways of gut microbiota, whether there is a causal relationship between the two, and biomarker screening and validation have not been fully discussed. In this study, Mendelian Randomization (MR) and Linkage Disequilibrium Score Regression (LDSC) are used to systematically investigate the associations between gut microbiota, three aging indicators, and 14 age-related diseases. Additionally, this study integrates machine learning algorithms to explore the potential of MR and LDSC methods for biomarker screening. Gut microbiota is found to be a potential risk factor for 14 age-related diseases. The causal effects of gut microbiota on chronic kidney disease, cirrhosis, and heart failure are partially mediated by aging indicators. Additionally, gut microbiota identified through MR and LDSC methods exhibit biomarker properties for disease prediction (average AUC = 0.731). These methods can serve as auxiliary tools for conventional biomarker screening, effectively enhancing the performance of disease models (average AUC increased from 0.808 to 0.832). This study provides evidence that supports the association between the gut microbiota and aging and highlights the potential of genetic correlation and causal relationship analysis in biomarker discovery. These findings may help to develop new approaches for healthy aging detection and intervention.

    Keywords: Mendelian randomization; aging; gut microbiota; machine learning.

    Keywords:gut microbes; aging indicator; age-related disease

    已有若干研究报道了肠道微生物对衰老的影响,但关于肠道菌群的中介途径、两者之间是否存在因果关系以及生物标志物筛选和验证的问题尚未充分讨论。本研究使用孟德尔随机化(Mendelian Randomization, MR)和连锁不平衡评分回归(Linkage Disequilibrium Score Regression, LDSC)系统地调查了肠道微生物与三种衰老指标及14种年龄相关疾病之间的关联性。此外,该研究整合机器学习算法探索MR和LDSC方法在生物标志物筛选中的潜力。发现肠道菌群是14种年龄相关疾病的潜在风险因素,并且肠道菌群对慢性肾病、肝硬化和心力衰竭的因果效应部分由衰老指标介导。通过MR和LDSC方法识别出的肠道微生物表现出疾病预测的生物标志物特性(平均AUC = 0.731)。这些方法可以作为常规生物标志物筛选的辅助工具,有效提升疾病的模型性能(平均AUC从0.808增加到0.832)。本研究为支持肠道菌群与衰老之间的关联提供了证据,并突出了遗传相关性和因果关系分析在生物标志物发现中的潜力。这些发现可能有助于开发新的健康老龄化检测和干预方法。

    关键词:孟德尔随机化;衰老;肠道微生物;机器学习。

    关键词:肠道微生物; 衰老标志; 年龄相关疾病

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Aging cell. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Aging cell

    缩写:AGING CELL

    ISSN:1474-9726

    e-ISSN:

    IF/分区:8.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Causal Analysis Between Gut Microbes, Aging Indicator, and Age-Related Disease, Involving the Discovery and Validation of Biomarkers