首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Review Nature methods. 2025 Mar 28. doi: 10.1038/s41592-024-02585-z Q136.12024

Enabling global image data sharing in the life sciences

促进生命科学领域全球图像数据共享 翻译改进

Peter Bajcsy  1, Sreenivas Bhattiprolu  2, Katy Börner  3, Beth A Cimini  4, Lucy Collinson  5, Jan Ellenberg  6, Reto Fiolka  7, Maryellen Giger  8, Wojtek Goscinski  9, Matthew Hartley  10, Nathan Hotaling  11, Rick Horwitz  12, Florian Jug  13, Isabel Kemmer  14, Anna Kreshuk  6, Emma Lundberg  15  16, Aastha Mathur  14, Kedar Narayan  17  18, Shuichi Onami  19, Anne L Plant  1, Fred Prior  20, Jason R Swedlow  21, Adam Taylor  22, Antje Keppler  23

作者单位 +展开

作者单位

  • 1 National Institute of Standards and Technology, Gaithersburg, MD, USA.
  • 2 ZEISS Microscopy Customer Center, Dublin, OH, USA.
  • 3 Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
  • 4 Imaging Platform, Broad Institute, Cambridge, MA, USA.
  • 5 Electron Microscopy Science Technology Platform, Francis Crick Institute, London, UK.
  • 6 European Molecular Biology Laboratory, Heidelberg, Germany.
  • 7 Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
  • 8 Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, IL, USA.
  • 9 National Imaging Facility, Brisbane, Queensland, Australia.
  • 10 European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
  • 11 National Center for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA.
  • 12 Allen Institute for Cell Science, Seattle, WA, USA.
  • 13 Fondazione Human Technopole, Milan, Italy.
  • 14 Euro-BioImaging Bio-Hub, European Molecular Biology Laboratory, Heidelberg, Germany.
  • 15 Stanford University, Stanford, CA, USA.
  • 16 SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
  • 17 Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
  • 18 Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
  • 19 RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
  • 20 Department of Biomedical Informatics, Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
  • 21 Divisions of Computational Biology and Molecular, Cell and Developmental Biology, University of Dundee, Dundee, UK.
  • 22 Sage Bionetworks, Seattle, WA, USA.
  • 23 Euro-BioImaging Bio-Hub, European Molecular Biology Laboratory, Heidelberg, Germany. antje.keppler@eurobioimaging.eu.
  • DOI: 10.1038/s41592-024-02585-z PMID: 40155720

    摘要 Ai翻译

    Despite the importance of imaging in biological and medical research, a large body of informative and precious image data never sees the light of day. To ensure scientific rigor as well as the reuse of data for scientific discovery, image data need to be made FAIR (findable, accessible, interoperable and reusable). Image data experts are working together globally to agree on common data formats, metadata, ontologies and supporting tools toward image data FAIRification. With this Perspective, we call on public funders to join these efforts to support their national scientists. What researchers most urgently need are openly accessible resources for image data storage that are operated under long-term commitments by their funders. Although existing resources in Australia, Japan and Europe are already collaborating to enable global image data sharing, these efforts will fall short unless more countries invest in operating and federating their own open data resources. This will allow us to harvest the enormous potential of existing image data, preventing substantial loss of unrealized value from past investments in imaging acquisition infrastructure.

    Keywords:global image data sharing; life sciences

    Copyright © Nature methods. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Nature methods

    缩写:NAT METHODS

    ISSN:1548-7091

    e-ISSN:1548-7105

    IF/分区:36.1/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Enabling global image data sharing in the life sciences