首页 正文

Nature computational science. 2023 Sep;3(9):789-804. doi: 10.1038/s43588-023-00511-5 Q118.32025

Efficient and accurate large library ligand docking with KarmaDock

使用KarmaDock高效准确地进行大型库配体对接 翻译改进

Xujun Zhang  1, Odin Zhang  1, Chao Shen  1, Wanglin Qu  1, Shicheng Chen  1, Hanqun Cao  2, Yu Kang  1, Zhe Wang  1, Ercheng Wang  3, Jintu Zhang  1, Yafeng Deng  4, Furui Liu  3, Tianyue Wang  1, Hongyan Du  1, Langcheng Wang  5, Peichen Pan  6, Guangyong Chen  7, Chang-Yu Hsieh  8, Tingjun Hou  9

作者单位 +展开

作者单位

  • 1 Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
  • 2 Department of Mathematics, Chinese University of Hong Kong, Hong Kong, China.
  • 3 Zhejiang Lab, Hangzhou, Zhejiang, China.
  • 4 Hangzhou Carbonsilicon AI Technology Co., Ltd, Hangzhou, Zhejiang, China.
  • 5 Department of Pathology, New York University Medical Center, New York, NY, USA.
  • 6 Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China. panpeichen@zju.edu.cn.
  • 7 Zhejiang Lab, Hangzhou, Zhejiang, China. gychen@zhejianglab.com.
  • 8 Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China. kimhsieh@zju.edu.cn.
  • 9 Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China. tingjunhou@zju.edu.cn.
  • DOI: 10.1038/s43588-023-00511-5 PMID: 38177786

    摘要 Ai翻译

    Ligand docking is one of the core technologies in structure-based virtual screening for drug discovery. However, conventional docking tools and existing deep learning tools may suffer from limited performance in terms of speed, pose quality and binding affinity accuracy. Here we propose KarmaDock, a deep learning approach for ligand docking that integrates the functions of docking acceleration, binding pose generation and correction, and binding strength estimation. The three-stage model consists of the following components: (1) encoders for the protein and ligand to learn the representations of intramolecular interactions; (2) E(n) equivariant graph neural networks with self-attention to update the ligand pose based on both protein-ligand and intramolecular interactions, followed by post-processing to ensure chemically plausible structures; (3) a mixture density network for scoring the binding strength. KarmaDock was validated on four benchmark datasets and tested in a real-world virtual screening project that successfully identified experiment-validated active inhibitors of leukocyte tyrosine kinase (LTK).

    Keywords:large library ligand docking; accurate large library; ligand docking karmaDock

    Copyright © Nature computational science. 中文内容为AI机器翻译,仅供参考!

    期刊名:Nature computational science

    缩写:NAT COMPUT SCI

    ISSN:N/A

    e-ISSN:2662-8457

    IF/分区:18.3/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Efficient and accurate large library ligand docking with KarmaDock