首页 文献索引 SCI期刊 AI助手
登录 注册
首页 正文

Review Nature food. 2023 Nov;4(11):941-948. doi: 10.1038/s43016-023-00867-x Q123.62024

Large language models and agricultural extension services

大型语言模型与农业推广服务 翻译改进

A Tzachor  1  2, M Devare  3, C Richards  4  5, P Pypers  3, A Ghosh  6, J Koo  7, S Johal  8, B King  9

作者单位 +展开

作者单位

  • 1 CSER, University of Cambridge, Cambridge, UK. atzachor@runi.ac.il.
  • 2 School of Sustainability, Reichman University, Herzliya, Israel. atzachor@runi.ac.il.
  • 3 International Institute of Tropical Agriculture (IITA), CGIAR, Ibadan, Nigeria.
  • 4 CSER, University of Cambridge, Cambridge, UK.
  • 5 Department of Engineering, University of Cambridge, Cambridge, UK.
  • 6 International Center for Tropical Agriculture (CIAT), CGIAR, Nairobi, Kenya.
  • 7 International Food Policy Research Institute (IFPRI), CGIAR, Washington, DC, USA.
  • 8 Agstack Project, Linux Foundation, San Francisco, CA, USA.
  • 9 Digital and Data Innovation Accelerator, CGIAR, Palmira, Colombia.
  • DOI: 10.1038/s43016-023-00867-x PMID: 37932438

    摘要 中英对照阅读

    Several factors have traditionally hampered the effectiveness of agricultural extension services, including limited institutional capacity and reach. Here we assess the potential of large language models (LLMs), specifically Generative Pre-trained Transformer (GPT), to transform agricultural extension. We focus on the ability of LLMs to simplify scientific knowledge and provide personalized, location-specific and data-driven agricultural recommendations. We emphasize shortcomings of this technology, informed by real-life testing of GPT to generate technical advice for Nigerian cassava farmers. To ensure a safe and responsible dissemination of LLM functionality across farming worldwide, we propose an idealized LLM design process with human experts in the loop.

    Keywords:large language models

    传统上,有几个因素阻碍了农业推广服务的有效性,包括机构能力和覆盖面有限。在这里,我们评估了大型语言模型(LLM),特别是生成预训练变换器(GPT)在转变农业推广方面的潜力。我们专注于LLMs简化科学知识并提供个性化、特定位置和数据驱动的农业建议的能力。我们强调了这项技术的缺点,并通过GPT的实际测试为尼日利亚木薯种植者提供了技术建议。为了确保在全球范围内安全、负责任地传播LLM功能,我们提出了一个由人类专家参与的理想化LLM设计过程。© 2023. 施普林格自然有限公司。

    关键词:大型语言模型; 农业推广服务

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Nature food. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Nature food

    缩写:

    ISSN:N/A

    e-ISSN:2662-1355

    IF/分区:23.6/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Large language models and agricultural extension services