首页 正文

Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2022 Aug;9(22):e2201117. doi: 10.1002/advs.202201117 Q114.12025

A Learning-Rate Modulable and Reliable TiOx Memristor Array for Robust, Fast, and Accurate Neuromorphic Computing

一种可调学习率且可靠的TiOx忆阻器阵列用于鲁棒、快速和准确的神经形态计算 翻译改进

Jingon Jang  1, Sanggyun Gi  2, Injune Yeo  2, Sanghyeon Choi  1, Seonghoon Jang  1, Seonggil Ham  1, Byunggeun Lee  2, Gunuk Wang  1  3  4

作者单位 +展开

作者单位

  • 1 KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • 2 School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, Republic of Korea, Buk-gu, 61005, Republic of Korea.
  • 3 Department of Integrative Energy Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • 4 Center for Neuromorphic Engineering, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
  • DOI: 10.1002/advs.202201117 PMID: 35666073

    摘要 Ai翻译

    Realization of memristor-based neuromorphic hardware system is important to achieve energy efficient bigdata processing and artificial intelligence in integrated device system-level. In this sense, uniform and reliable titanium oxide (TiOx ) memristor array devices are fabricated to be utilized as constituent device element in hardware neural network, representing passive matrix array structure enabling vector-matrix multiplication process between multisig... ...点击完成人机验证后继续浏览
    Copyright © Advanced science (Weinheim, Baden-Wurttemberg, Germany). 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Advanced science

    缩写:ADV SCI

    ISSN:N/A

    e-ISSN:2198-3844

    IF/分区:14.1/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    A Learning-Rate Modulable and Reliable TiOx Memristor Array for Robust, Fast, and Accurate Neuromorphic Computing