首页 正文

International journal of computer assisted radiology and surgery. 2025 Jun 16. doi: 10.1007/s11548-025-03453-7 Q22.32025

Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma

基于解释性深度模糊网络的乳头状甲状腺癌中央区淋巴结转移状态检测方法研究 翻译改进

Wenxu Wang  1  2, Zhenyuan Ning  3  4  5, Jifan Zhang  6, Yu Zhang  7  8, Weizhen Wang  9

作者单位 +展开

作者单位

  • 1 School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
  • 2 Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
  • 3 School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong Province, China. jonnyning@foxmail.com.
  • 4 Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong Province, China. jonnyning@foxmail.com.
  • 5 Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. jonnyning@foxmail.com.
  • 6 Department of Ultrasonic Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
  • 7 School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, Guangdong Province, China. yuzhang@smu.edu.cn.
  • 8 Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong Province, China. yuzhang@smu.edu.cn.
  • 9 Department of Ultrasonic Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China. 99263574@qq.com.
  • DOI: 10.1007/s11548-025-03453-7 PMID: 40522569

    摘要 中英对照阅读

    Purpose: The non-invasive assessment of central lymph node metastasis (CLNM) in patients with papillary thyroid carcinoma (PTC) plays a crucial role in assisting treatment decision and prognosis planning. This study aims to use an interpretable deep fuzzy network guided by expert knowledge to predict the CLNM status of patients with PTC from ultrasound images. ... ...点击完成人机验证后继续浏览

    目的: 对乳头状甲状腺癌(PTC)患者进行中央淋巴结转移(CLNM)的非侵入性评估在辅助治疗决策和预后规划中起着关键作用。本研究旨在利用由专家知识引导的可解释深度模糊网络,从超声图像预测PTC患者的CLNM状态。

    方法: 本研究共纳入1019名PTC患者,其中包括465名CLNM患者和554名非CLNM患者。病理诊断作为金标准来确定转移状态。收集甲状腺的临床和形态学特征作为专家知识,指导深度模糊网络预测CLNM状态。该网络由感兴趣区域(ROI)分割模块、具有知识感知的功能提取模块以及模糊预测模块组成。该网络在652名患者上进行训练,在163名患者上进行验证,并在204名患者上进行测试。

    结果: 模型在预测CLNM状态方面表现出良好的性能,达到了受试者工作特征曲线下面积(AUC)、准确率、精确度、灵敏度和特异性的分别为0.786(95% CI 0.720-0.846),0.745(95% CI 0.681-0.799),0.727(95% CI 0.636-0.819),0.696(95% CI 0.594-0.789)和0.786(95% CI 0.712-0.864)。此外,模型中模糊系统的规则易于理解和解释,并具有良好的可解释性。

    结论: 由专家知识引导的深度模糊网络以高准确率和良好可解释性预测了PTC患者的CLNM状态,可能被用作术前临床决策的有效工具。

    关键词:中央淋巴结转移;深度学习;模糊系统;乳头状甲状腺癌;超声。

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Interpretable deep fuzzy network-aided detection of central lymph node metastasis status in papillary thyroid carcinoma