首页 正文

Journal of hydrology. 2024 Oct:642:131876. doi: 10.1016/j.jhydrol.2024.131876 Q16.32025

Aquifer system deformation in the San Luis Valley: A new framework for modeling subsidence in agricultural regions

圣胡安山区地下含水层变形:农业区沉降建模的新框架 翻译改进

Sanaz Vajedian  1  2, Ryan Smith  3, Willem A Schreüder  4, Jeremy Maurer  2

作者单位 +展开

作者单位

  • 1 Wesleyan University, Department of Earth and Environmental Sciences, Middletown, CT 06459, USA.
  • 2 Missouri University of Science and Technology, Geological Sciences and Geological and Petroleum Engineering, Rolla, MO 65401, USA.
  • 3 Colorado State University, Department of Civil and Environmental Engineering, Fort Collins, CO 80523, USA.
  • 4 University of Colorado Boulder, Department of Computer Science, Boulder, CO 80309, USA.
  • DOI: 10.1016/j.jhydrol.2024.131876 PMID: 40519854

    摘要 中英对照阅读

    The San Luis Valley (SLV), Colorado, is challenged with implementing sustainable groundwater management in the face of increasing surface water scarcity due to climate change. Groundwater extraction in unconsolidated aquifers such as the SLV can cause cm-scale subsidence and rebound. This study utilizes Interferometric Synthetic Aperture Radar (InSAR) data, validated by Global Navigation Satellite System (GNSS) measurements, to measure subsidence and analyze the groundwater dynamics that cause it. Addressing the challenges of phase decorrelation and data gaps, notably from September 2018 to April 2019, we adopted a modified DS-interpolation algorithm, alongside a Singular Spectrum Analysis (SSA)-based gap filling technique. Furthermore, we enhanced the temporal resolution of groundwater level data through the Theis curve interpolation. These methodologies enabled the integration of observational well data with satellite measurements to calibrate a one-dimensional deformation model, capturing both the elastic and inelastic responses of the aquifer system. Our investigation, spanning 2015 to 2021, reveals both seasonal and long-term subsidence, with the confined aquifer section experiencing up to 1 cm/year of subsidence alongside notable seasonal fluctuations. The methodology presented here provides a path to model subsidence in regions with sparse groundwater level and noisy InSAR data. It also provides valuable insights for developing effective water management strategies in the SLV.

    Keywords: Aquifer storage parameters; Data gap filling; Groundwater dynamics; InSAR time series analysis; Land subsidence; MCMC; San Luis valley (SLV).

    Keywords:aquifer system deformation; subsidence modeling; agricultural regions

    科罗拉多州圣路易斯谷(SLV)面临着由于气候变化导致的地表水资源稀缺,需要实施可持续的地下水管理。在未固结含水层中抽取地下水可能会引起厘米尺度的沉降和回弹,例如SLV的情况。本研究利用干涉合成孔径雷达(InSAR)数据,并通过全球导航卫星系统(GNSS)测量进行验证,以测量沉降并分析导致其的原因。为了解决相位去相关和数据缺口的问题,尤其是在2018年9月至2019年4月期间的数据缺失问题,我们采用了改进的DS插值算法以及基于奇异谱分析(SSA)的间隙填补技术。此外,我们通过Theis曲线插值提高了地下水位数据的时间分辨率。这些方法使我们可以将观测井数据与卫星测量结果相结合,校准一个一维变形模型,以捕捉含水层系统的弹性及非弹性响应。我们的研究从2015年至2021年揭示了季节性和长期的沉降现象,在限制性含水层部分每年经历高达1厘米/年的沉降以及明显的季节波动。这里提出的方法为在地下水位稀疏且InSAR数据噪声较多的地区建模沉降提供了路径,同时也为SLV地区的有效水资源管理策略开发提供了宝贵的见解。

    关键词: 含水层储存参数;数据间隙填补;地下水动力学;InSAR时间序列分析;土地沉降;MCMC;圣路易斯谷(SLV)。

    关键词:含水层系统变形; 沉降模拟; 农业地区

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of hydrology. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of hydrology

    缩写:J HYDROL

    ISSN:0022-1694

    e-ISSN:1879-2707

    IF/分区:6.3/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Aquifer system deformation in the San Luis Valley: A new framework for modeling subsidence in agricultural regions