Emerging pollutants such as tetracycline antibiotics (TCs) have garnered attention due to their ecological impacts and the evolution of drug resistance. However, the comprehensive monitoring of TCs remains inadequate. This study presents a multifunctional integrated system that addresses the limitations in current TCs research by combining detection, degradation, and bioimaging capabilities within a platform. By employing magnetic MgFe2O4 nanospheres, we achieve full-chain coverage for pollutant treatment, transcending the limitations of traditional single-function materials. To achieve this, we utilize machine-learning-driven precise detection technology and apply the graph neural networks model to analyze fluorescence spectra, successfully distinguishing between four TCs with highly similar structures. Subsequent dual-channel in vivo fluorescence imaging monitoring in zebrafish enables visualization of the spatial distribution of TCs types within living organisms and quantitative monitoring of TCs at different concentrations, providing a new tool for the in situ tracking of drug metabolism processes and ecotoxicological research. Lastly, the magnetic MgFe2O4 nanospheres exhibit efficient degradation capabilities, with degradation efficiencies exceeding 93.98% for all four TCs within 50 min. Additionally, the magnetic properties of the nanospheres address the challenge of nanomaterial recovery, enabling recycling of the catalyst. This work provides an innovative AI-material hybrid platform for intelligent pollution control.
Analytical chemistry. 2025 Jun 15. doi: 10.1021/acs.analchem.5c01814 Q16.72025
A Closed-Loop Environmental Health Management Platform: A Multifunctional MgFe2O4 Nanoparticle Enabling AI-Enhanced Detection, Bioimaging, and Degradation of Tetracycline Antibiotics
一种闭环环境健康管理系统平台:一种多功能的镁铁氧体纳米粒子,可增强AI检测、生物成像和四环素抗生素降解能力 翻译改进
作者单位 +展开
作者单位
DOI: 10.1021/acs.analchem.5c01814 PMID: 40518739
摘要 中英对照阅读
新型污染物如四环素类抗生素(TCs)因其生态影响和药物耐药性进化而引起了广泛关注。然而,对TCs的全面监测仍然不足。本研究提出了一种多功能集成系统,该系统通过结合检测、降解和生物成像能力解决了当前TCs研究中的局限性。利用磁性MgFe2O4纳米球,我们实现了对污染物处理的全链覆盖,超越了传统单一功能材料的限制。为此,我们采用机器学习驱动的精确检测技术,并应用图神经网络模型分析荧光光谱,成功地区分四种结构高度相似的TCs。随后,在斑马鱼中的双通道体内荧光成像监测能够可视化活体生物中不同类型TCs的空间分布,并对不同浓度下的TCs进行定量监控,为原位跟踪药物代谢过程和生态毒理学研究提供了新的工具。最后,磁性MgFe2O4纳米球表现出高效的降解能力,在50分钟内所有四种TCs的降解效率均超过93.98%。此外,纳米球的磁性解决了纳米材料回收的挑战,使催化剂可以循环使用。这项工作提供了一种创新的人工智能-材料混合平台,用于智能污染控制。
相关内容
-
Effect of microplastics on the degradation of tetracycline in a soil microbial electric field
微塑料对土壤微生物电场中四环素降解的影响
Journal of hazardous materials. 2023 Oct 15:460:132313.
-
Bi2Fe4O9/rGO nanocomposite with visible light photocatalytic performance for tetracycline degradation
具有可见光催化性能的Bi2Fe4O9/rGO纳米复合材料在四环素降解中的应用
Environmental research. 2024 May 15:249:118361.
-
Enhanced photolysis of tetracycline by Zn(II): Role of complexation
Zn(II)复合物增强四环素光解作用的研究
The Science of the total environment. 2024 Jan 20:909:168484.
-
Application of FeS-activated persulfate oxidation system for the degradation of tetracycline in aqueous solution
基于FeS活化的过硫酸盐降解水体中四环素的性能及其机理研究
Environmental science and pollution research international. 2023 Jan;30(4):10745-10755.
-
Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst
16%Er3+-Bi2WO6光催化剂增强型可见光驱动四环素光催化降解反应
Journal of hazardous materials. 2022 Jan 15:422:126920.
-
A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue
一种能感应并降解四环素抗生素残留的遗传工程菌株大肠杆菌菌株
Synthetic and systems biotechnology. 2018 May 31;3(3):196-203.
-
Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline
藻菌颗粒污泥培养及四环素降解特性研究
Water environment research : a research publication of the Water Environment Federation. 2023 Mar;95(3):e10846.
-
Effective degradation of tetracycline by organic-inorganic hybrid materials induced by triethylenediamine
三乙二胺诱导的有机-无机杂化材料有效降解四环素
Environmental research. 2021 Jul:198:111253.