Recently, single-shot phase retrieval techniques, which aim to reconstruct an original sample from a single near-field diffraction pattern, have garnered significant attention. Despite their promise, existing methods are highly dependent on precise physical forward models, constraining their effectiveness in real-world scenarios. To overcome the challenges posed by unknown diffraction distances in blind single-shot phase retrieval, this paper introduces a self-supervised physics-adaptive neural network termed BlindPR-SSPANN. The proposed method jointly optimizes the physical parameters of the forward propagation model alongside the trainable parameters of the reconstruction network. To achieve this, BlindPR-SSPANN incorporates a novel network architecture that integrates tunable physical parameters within a multi-stage, coupled reconstruction process. The proposed network is trained under a self-supervised scheme facilitated by a refined physics-consistent loss function. Simulation and experimental results demonstrate that BlindPR-SSPANN delivers high-performance reconstructions from a single intensity measurement, even under large diffraction distance errors, enabling self-calibrated snapshot coherent diffraction imaging.
Optics express. 2025 May 19;33(10):20516-20529. doi: 10.1364/OE.559847 Q23.32025
Blind single-shot phase retrieval based on a self-supervised physics-adaptive neural network
基于自监督物理适应神经网络的单次盲相位检索方法 翻译改进
作者单位 +展开
作者单位
DOI: 10.1364/OE.559847 PMID: 40514976
摘要 中英对照阅读
最近,单次拍摄相位恢复技术引起了广泛关注。这些技术旨在从单一的近场衍射图案中重建原始样本。尽管它们很有前景,但现有的方法高度依赖于精确的物理前向模型,在实际场景中的有效性受到了限制。为了克服盲单次拍摄相位恢复中未知衍射距离带来的挑战,本文提出了一种自监督的物理适应性神经网络,称为BlindPR-SSPANN。该方法同时优化了前向传播模型的物理参数以及重建网络的可训练参数。为此,BlindPR-SSPANN引入了一种新的网络架构,将可调物理参数整合到一个多阶段耦合重建过程中。该网络在自监督方案下进行训练,并通过一个精炼的物理一致损失函数来实现。仿真和实验结果表明,即使在较大的衍射距离误差情况下,BlindPR-SSPANN也能从单一强度测量中获得高性能的重建图像,从而实现了自校准快照相干衍射成像。
相关内容
-
ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning
ProtTrans:通过自监督学习理解生命语言
IEEE transactions on pattern analysis and machine intelligence. 2022 Oct;44(10):7112-7127.
-
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
杂锦:一种高效的自我监督学习方法用于解析单细胞转录组
iScience. 2021 Oct 2;24(11):103200.
-
A Self-Supervised Residual Feature Learning Model for Multifocus Image Fusion
一种自监督残差特征学习多焦点图像融合模型
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. 2022:31:4527-4542.
-
Self-Supervised Longitudinal Neighbourhood Embedding
自监督纵向邻域嵌入
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2021 Sep-Oct:12902:80-89.
-
A Self-Supervised Equivariant Refinement Classification Network for Diabetic Retinopathy Classification
自监督等变精炼分类网络的糖尿病视网膜病变分类方法
Journal of imaging informatics in medicine. 2024 Sep 19.
-
Correction: Margin-aware optimized contrastive learning for enhanced self-supervised histopathological image classification
纠正:边际感知优化对比学习,用于增强的自监督组织病理图像分类
Health information science and systems. 2024 Dec 28;13(1):8.
-
Self-supervised learning of scale-invariant neural representations of space and time
自监督学习尺度不变的时空神经表征
Journal of computational neuroscience. 2025 Jan 22.
-
SSLDTI: A novel method for drug-target interaction prediction based on self-supervised learning
SSLDTI:基于自监督学习的药物靶点相互作用预测新方法
Artificial intelligence in medicine. 2024 Mar:149:102778.