首页 正文

Journal of medical Internet research. 2025 Jun 13:27:e72260. doi: 10.2196/72260 Q16.02025

Mental Health Issues and 24-Hour Movement Guidelines-Based Intervention Strategies for University Students With High-Risk Social Network Addiction: Cross-Sectional Study Using a Machine Learning Approach

针对高风险社交网络成瘾的大学生的精神健康问题及基于运动指南的干预策略:使用机器学习方法的横断面研究 翻译改进

Lin Luo  1  2, Junfeng Yuan  1, Chen Xu  1, Huilin Xu  1, Haojie Tan  1, Yinhao Shi  1, Haiping Zhang  1, Haijun Xi  1

作者单位 +展开

作者单位

  • 1 School of Physical Education, Guizhou Normal University, University Town, Siya Road, Huaxi District, Guiyang, 550025, China, 86 86751983.
  • 2 Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Guiyang, China.
  • DOI: 10.2196/72260 PMID: 40512996

    摘要 中英对照阅读

    Background: The exponential growth of digital technologies and the ubiquity of social media platforms have led to unprecedented mental health challenges among college students, highlighting the critical need for effective intervention approaches.

    Objective: This study aimed to explore the relationship between meeting the 24-hour movement guidelines (24-HMG) health behavior combinations and the risk of social network addiction (SNA) as well as mental health issues among university students. It further sought to compare differences in mental health indicators and SNA levels across various risk groups and adherence patterns, and to identify the optimal 24-HMG health behavior intervention strategies for students at high risk of SNA.

    Methods: This cross-sectional study recruited a total of 12,541 university students from the university town of Guizhou Province as participants. Data were collected through standardized questionnaires, including the Chinese version of Social Network Addiction Scale for College Students (SNAS-C), the adult attention-deficit/hyperactivity disorder (ADHD) self-report scale (ASRS), and the Chinese version of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Self-Report Level 1 Cross-Cutting Symptom Measure for Adults (DSM-5 CCSM), among others. The primary analytical method used was the random forest model, which was used to explore the relationship between different 24-HMG behavior combinations and mental health variables among student at high-risk of SNA. In addition, the study aimed to identify the optimal 24-HMG health behavior intervention strategies for this high-risk group.

    Results: Participants in the meeting none group exhibited the highest SNA scores (57.98), which declined progressively with greater adherence. Among single-guideline groups, meeting physical activity (PA; 53.07) and meeting sedentary time (ST; 52.72) showed similar scores. Further reductions were seen in meeting PA+ST (49.68), meeting sleep (48.44), and meeting ST+sleep (44.75), with the lowest in meeting PA+ST+sleep. Approximately 6% of the variance in SNA was attributable to differences in adherence patterns (η²=0.06). Students meeting all three 24-HMG components-PA, sleep, and ST-demonstrated the strongest protection against attention deficit, depression, and anxiety. All 24-HMG behaviors were inversely associated with mental health symptoms, except academic satisfaction, which was positively correlated. Random forest modeling identified meeting sleep+ST as the most impactful for mania (0.4491), sleep disturbance (0.4032), personality (0.3924), and dissociation (0.3832). Meeting ST alone showed the strongest effects on substance (0.6176) and alcohol use (0.6597). Depression was influenced by meeting sleep+ST (0.2053), meeting PA+ST+sleep (0.1650), and meeting PA+ST (0.1634). The model achieved high accuracy for ASRS (0.912; F1-score=0.927), with robust predictions for substance use (F1-score=0.873) and mania (F1-score=0.836).

    Conclusions: Adherence to the health behaviors recommended by the 24-HMG can significantly improve the mental health outcomes of university students at high risk for SNA. The findings of this study support the development of mental health intervention strategies for students at high-risk of SNA based on the 24-HMG framework.

    Keywords: 24-hour movement guidelines; intervention strategies; mental health; social network addiction; university students.

    Keywords:mental health issues; movement guidelines; intervention strategies; social network addiction; machine learning approach

    背景:

    随着数字技术的指数级增长和社交媒体平台的普及,大学生面临着前所未有的心理健康挑战,这突显了有效干预措施的重要性。

    目的:

    本研究旨在探讨符合24小时运动指南(24-HMG)健康行为组合与社交网络成瘾(SNA)风险及心理健康问题之间的关系。此外,该研究还试图比较不同风险群体和依从模式下的心理健康指标和社会网络成瘾水平的差异,并为高风险学生识别最佳的24-HMG健康行为干预策略。

    方法:

    这项横断面研究共招募了贵州省大学城中的12,541名大学生作为参与者。数据通过标准化问卷收集,包括《中国版社交媒体上瘾量表(SNAS-C)》、成人注意力缺陷多动障碍自评量表(ASRS)、以及《精神疾病诊断与统计手册第五版(DSM-5)成人一级交叉症状测量工具》等。主要分析方法是随机森林模型,该模型用于探索不同24-HMG行为组合与SNA高风险学生心理健康变量之间的关系,并为这一高风险群体识别最佳的24-HMG健康行为干预策略。

    结果:

    在未符合任何指南组中,参与者表现出最高的社交网络成瘾评分(57.98),随依从性增加而逐渐下降。在单一指南组中,符合身体活动和久坐时间的标准分值相似,分别为53.07和52.72;进一步减少可见于符合PA+ST(49.68)、睡眠(48.44)及ST+睡眠组合(44.75),其中完全符合PA+ST+睡眠组最低。大约6%的SNA变异可归因于依从模式差异(η²=0.06)。所有三项24-HMG成分-身体活动、睡眠和久坐时间都表现出最强的保护作用,可以降低注意力缺陷、抑郁及焦虑的风险。除了学术满意度外,所有24-HMG行为均与心理健康症状呈负相关。随机森林模型发现符合ST+睡眠对躁狂(0.4491)、睡眠障碍(0.4032)、人格(0.3924)和分离性(0.3832)影响最大;仅符合久坐时间则对物质滥用(0.6176)及饮酒(0.6597)的影响最显著。抑郁受到ST+睡眠、PA+ST+睡眠及PA+ST组合的影响,分别为0.2053、0.1650和0.1634。模型在ASRS上的准确度为0.912(F1得分=0.927),对物质滥用预测的稳健性也很好(F1分数=0.873),躁狂症预测准确性达到0.836。

    结论:

    遵循由24-HMG推荐的健康行为可以显著改善高风险社交网络成瘾大学生的心理健康结果。本研究发现支持根据24-HMG框架为有SNA风险的学生制定心理健康干预策略的发展。

    关键词:

    24小时运动指南;干预措施;心理健康;社交网络成瘾;大学生。

    关键词:心理健康问题; 运动指南; 干预策略; 社交网络成瘾; 机器学习方法

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of medical Internet research. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of medical internet research

    缩写:J MED INTERNET RES

    ISSN:1438-8871

    e-ISSN:N/A

    IF/分区:6.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Mental Health Issues and 24-Hour Movement Guidelines-Based Intervention Strategies for University Students With High-Risk Social Network Addiction: Cross-Sectional Study Using a Machine Learning Approach