首页 正文

Journal of agricultural and food chemistry. 2025 Jun 13. doi: 10.1021/acs.jafc.5c03851 Q16.22025

Multimodular Metabolic Engineering Strategy Enables High-Efficiency Synthesis of Lacto- N-fucopentaose I in Engineered Escherichia coli

多模块代谢工程策略促进乳二糖岩藻五糖I在大肠杆菌中的高效合成 翻译改进

Jin Wang  1  2, Caiwen Lao  3, Jinyong Wu  2, Lixia Yuan  1  2, Zheng Lei  1  2, Xiangsong Chen  1  2, Jianming Yao  1  2

作者单位 +展开

作者单位

  • 1 University of Science and Technology of China, Hefei 230026, China.
  • 2 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
  • 3 Hefei CAS Health Bio-Industrial Technology Institute Co., Ltd., Hefei 230031, China.
  • DOI: 10.1021/acs.jafc.5c03851 PMID: 40512782

    摘要 中英对照阅读

    Lacto-N-fucopentaose I (LNFP I), a fucosylated neutral human milk oligosaccharide (HMO) with diverse biological functions, was biosynthesized through metabolic engineering in Escherichia coli BL21star (DE3). A de novo pathway was constructed by chromosomal integration of three key enzymes: lgtA (β-1,3-N-acetylglucosaminyltransferase), wbdO (β-1,3-galactosyltransferase), and galE (UDP-galactose-4-epimerase), generating a plasmid-free strain that achieved a lacto-N-tetraose (LNT) titer of 109.80 g/L in a 5 L bioreactor, the highest yield reported to date. Subsequent screening identified α-1,2-fucosyltransferase (FutC) from Helicobacter pylori as the optimal catalyst for LNFP I biosynthesis. Multidimensional optimization strategies were systematically implemented, including copy number balancing of rate-limiting transferases, promoter-RBS engineering, enhanced intracellular cofactor regeneration, and knockout of competing pathways. Fed-batch fermentation under optimized conditions yielded 77 g/L LNFP I with 93.05% LNT-to-LNFP I conversion efficiency, representing both the highest reported titer and precursor utilization efficiency for LNFP I.

    Keywords: Escherichia coli; human milk oligosaccharide; lacto-N-fucopentaose I; lacto-N-tetraose; metabolic engineering.

    Keywords:lacto-n-fucopentaose i; escherichia coli

    乳糖-N-岩藻五糖I(LNFP I)是一种岩藻糖化的中性人乳低聚糖(HMO),具有多种生物学功能。通过代谢工程在大肠杆菌BL21star (DE3) 中生物合成该化合物。构建了一个新的途径,通过染色体整合三个关键酶:lgtA(β-1,3-N-乙酰氨基葡萄糖转移酶)、wbdO(β-1,3-半乳糖转移酶)和galE(尿苷二磷酸半乳糖-4-差向异构酶),生成了一个不含质粒的菌株,在5升生物反应器中实现了乳糖-N-四糖(LNT)滴度为109.80 g/L,这是迄今为止报道的最高产量。随后的筛选鉴定出幽门螺杆菌来源的α-1,2-岩藻糖转移酶(FutC)是LNFP I生物合成的最佳催化剂。系统地实施了多维优化策略,包括限速转移酶拷贝数平衡、启动子-RBS工程、增强胞内辅因子再生以及竞争途径敲除。在优化条件下进行补料分批发酵可获得77 g/L LNFP I,并且LNT向LNFP I的转化效率达到93.05%,这是迄今为止报道的最高滴度和前体利用率。

    关键词:大肠杆菌;人乳低聚糖;乳糖-N-岩藻五糖I;乳糖-N-四糖;代谢工程。

    关键词:多模块代谢工程; 乳糖-N-岩藻五糖I; 大肠杆菌

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of agricultural and food chemistry. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of agricultural and food chemistry

    缩写:J AGR FOOD CHEM

    ISSN:0021-8561

    e-ISSN:1520-5118

    IF/分区:6.2/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Multimodular Metabolic Engineering Strategy Enables High-Efficiency Synthesis of Lacto- N-fucopentaose I in Engineered Escherichia coli