首页 正文

Review Frontiers in plant science. 2025 May 29:16:1597007. doi: 10.3389/fpls.2025.1597007 Q14.82025

Unlocking the potential of flavonoid biosynthesis through integrated metabolic engineering

集成代谢工程解锁黄酮类化合物生物合成潜力 翻译改进

Yuan Wang  1, Jiahong Chen  2, Genhe He  1, Li Yin  1, Yonghui Liao  1

作者单位 +展开

作者单位

  • 1 Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Sciences, Jinggangshan University, Ji'an, China.
  • 2 Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai Agrobiological Gene Center, Shanghai, China.
  • DOI: 10.3389/fpls.2025.1597007 PMID: 40510168

    摘要 中英对照阅读

    Flavonoids are a diverse class of plant polyphenols with essential roles in development, defense, and environmental adaptation, as well as significant applications in medicine, nutrition, and cosmetics. However, their naturally low abundance in plant tissues poses a major barrier to large-scale utilization. This review provides a comprehensive and forward-looking synthesis of flavonoid biosynthesis, regulation, transport, and yield enhancement strategies. We highlight key advances in understanding transcriptional and epigenetic control of flavonoid pathways, focusing on the roles of MYB, bHLH, and WD40 transcription factors and chromatin modifications. We also examine flavonoid transport mechanisms at cellular and tissue levels, supported by emerging spatial metabolomics data. Distinct from conventional reviews, this review explores how plant cell factories, genome editing, environmental optimization, and artificial intelligence (AI)-driven metabolic engineering can be integrated to boost flavonoid production. By bridging foundational plant science with synthetic biology and digital tools, this review outlines a novel roadmap for sustainable, high-yield flavonoid production with broad relevance to both research and industry.

    Keywords: artificial intelligence; flavonoid biosynthesis; metabolic engineering; plant cell factory; transcriptional regulation.

    Keywords:flavonoid biosynthesis; metabolic engineering

    黄酮类化合物是一大类植物多酚,它们在植物发育、防御和环境适应中起着重要作用,并且在医药、营养和化妆品领域具有重要应用。然而,它们在植物组织中的天然含量较低,成为大规模利用的主要障碍。本文综述了黄酮类化合物生物合成、调控、运输及产量提升策略的全面而前瞻性的研究成果。我们重点介绍了对黄酮途径转录和表观遗传控制的理解进展,特别是MYB、bHLH和WD40转录因子以及染色质修饰的作用。同时,我们也探讨了基于新兴空间代谢组学数据的细胞和组织水平上的黄酮类化合物运输机制。不同于传统的综述文章,本文探索了如何通过整合植物细胞工厂、基因编辑技术、环境优化及人工智能(AI)驱动的代谢工程来提升黄酮类化合物产量。通过将基础植物科学与合成生物学和数字工具相结合,本文为可持续高产黄酮类化合物生产制定了一个新的路线图,具有广泛的研究和产业应用价值。

    关键词:人工 intelligence;黄酮生物合成;代谢工程;植物细胞工厂;转录调控。

    关键词:黄酮类生物合成; 代谢工程

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Frontiers in plant science. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Frontiers in plant science

    缩写:FRONT PLANT SCI

    ISSN:1664-462X

    e-ISSN:1664-462X

    IF/分区:4.8/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Unlocking the potential of flavonoid biosynthesis through integrated metabolic engineering