首页 正文

Diagnostics (Basel, Switzerland). 2025 Jun 3;15(11):1417. doi: 10.3390/diagnostics15111417 Q13.32025

Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls

一种新的能源视觉(NEV)相机在诊断支持腕管综合征中的潜在应用:开发决策算法以区分腕管综合症患者手与正常人手的区别 翻译改进

Dror Robinson  1, Mohammad Khatib  1, Mohammad Eissa  1, Mustafa Yassin  1

作者单位 +展开

作者单位

  • 1 Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, Affiliated to Tel Aviv University, Tel Aviv 6997801, Israel.
  • DOI: 10.3390/diagnostics15111417 PMID: 40506989

    摘要 中英对照阅读

    Introduction: Carpal Tunnel Syndrome (CTS) is a prevalent neuropathy requiring accurate, non-invasive diagnostics to minimize patient burden. This study evaluates the New Energy Vision (NEV) camera, an RGB-based multispectral imaging tool, to detect CTS through skin texture and color analysis, developing a machine learning algorithm to distinguish CTS-affected hands from controls. Methods: A two-part observational study included 103 participants (50 controls, 53 CTS patients) in Part 1, using NEV camera images to train a Support Vector Machine (SVM) classifier. Part 2 compared median nerve-damaged (MED) and ulnar nerve-normal (ULN) palm areas in 32 CTS patients. Validations included nerve conduction tests (NCT), Semmes-Weinstein monofilament testing (SWMT), and Boston Carpal Tunnel Questionnaire (BCTQ). Results: The SVM classifier achieved 93.33% accuracy (confusion matrix: [[14, 1], [1, 14]]), with 81.79% cross-validation accuracy. Part 2 identified significant differences (p < 0.05) in color proportions (e.g., red_proportion) and Haralick texture features between MED and ULN areas, corroborated by BCTQ and SWMT. Conclusions: The NEV camera, leveraging multispectral imaging, offers a promising non-invasive CTS diagnostic tool using detection of nerve-related skin changes. Further validation is needed for clinical adoption.

    Keywords: BCTQ; Carpal Tunnel Syndrome; Haralick texture features; NEV camera; machine learning; multispectral imaging; non-invasive diagnosis; ultra-weak photon emission.

    Keywords:new energy vision camera; carpal tunnel syndrome; decision-making algorithm

    介绍:腕管综合症(CTS)是一种常见的神经病变,需要准确且无创的诊断方法以减少患者的负担。本研究评估了新能量视觉(NEV)相机,这是一种基于RGB的多光谱成像工具,通过皮肤纹理和颜色分析来检测CTS,并开发了一种机器学习算法,用于区分受影响的手与对照组。方法:这项观察性研究分为两部分,第一部分包括103名参与者(50名对照组,53名CTS患者),使用NEV相机图像训练支持向量机(SVM)分类器。第二部分在32名CTS患者中比较了正中神经损伤区域(MED)和尺神经正常区域(ULN)。验证方法包括神经传导测试(NCT)、Semmes-Weinstein单丝测试(SWMT)以及波士顿腕管综合症问卷(BCTQ)。结果:SVM分类器实现了93.33%的准确率(混淆矩阵:[[14, 1], [1, 14]]),交叉验证准确性为81.79%。第二部分在MED和ULN区域之间发现了颜色比例(例如,红比例)和Haralick纹理特征等方面的显著差异,并且这些结果得到了BCTQ和SWMT的支持。结论:NEV相机利用多光谱成像技术提供了一种有前景的无创CTS诊断工具,通过检测与神经相关的皮肤变化。需要进一步验证以用于临床应用。

    关键词:BCTQ;腕管综合症;Haralick纹理特征;NEV相机;机器学习;多光谱成像;非侵入性诊断;超弱光子发射。

    关键词:新能源愿景相机; 腕隧道综合症; 决策算法

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Diagnostics (Basel, Switzerland). 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Diagnostics

    缩写:

    ISSN:N/A

    e-ISSN:2075-4418

    IF/分区:3.3/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Potential Use of a New Energy Vision (NEV) Camera for Diagnostic Support of Carpal Tunnel Syndrome: Development of a Decision-Making Algorithm to Differentiate Carpal Tunnel-Affected Hands from Controls