Computer methods in biomechanics and biomedical engineering. 2025 Jun 11:1-13. doi: 10.1080/10255842.2025.2516767 Q41.62025
Machine learning-driven construction and validation of an intra-tumoral heterogeneity-associated prognostic model for bladder urothelial carcinoma
基于机器学习的构建和验证用于预测膀胱尿路上皮癌肿瘤内异质性相关预后的模型 翻译改进
作者单位 +展开
作者单位
DOI: 10.1080/10255842.2025.2516767 PMID: 40500142
摘要 中英对照阅读
肿瘤内异质性(ITH)在肿瘤进展和预后中起着至关重要的作用。本研究旨在基于与ITH相关的基因构建膀胱尿路上皮癌(BLCA)的预后模型。收集并处理了来自多个公共队列的转录组学和临床数据。使用加权基因共表达网络分析识别出与ITH相关的枢纽基因。采用结合LASSO和随机生存森林算法开发了一个由14个基因组成的预后标志物。该模型在训练集和五个独立验证队列中表现出强大的预测性能,具有较高的一致性指数值和有利的时间依赖性ROC曲线。此外,单细胞RNA测序分析证实,与对照组相比,多个模型基因在BLCA样本中的表达显著上调,并且在不同类型的细胞中显示出不同的表达模式。这些发现突出了ITH相关基因的预后意义,并支持将提出的模型应用于改善BLCA患者的结局预测和指导个性化治疗。
关键词:机器学习;膀胱尿路上皮癌;肿瘤内异质性;预后。
相关内容
-
Single-Nuclei Transcriptome Profiling Reveals Intra-Tumoral Heterogeneity and Characterizes Tumor Microenvironment Architecture in a Murine Melanoma Model
单细胞核转录谱分析揭示了小鼠黑色素瘤模型中的肿瘤异质性和微环境结构
Sushant Parab et al.
International journal of molecular sciences. 2024 Oct 18;25(20):11228.
-
A New Approach to Predict the Histological Variants of Bladder Urothelial Carcinoma: Machine Learning-Based Radiomics Analysis
基于机器学习的影像组学分析预测膀胱尿路上皮癌组织学分型的新方法
Muhammed Said Beşler
Academic radiology. 2022 Nov;29(11):1690-1691.
-
Evaluation of grade and invasiveness of bladder urothelial carcinoma using infrared imaging and machine learning
红外成像和机器学习在膀胱尿路上皮癌分级及侵袭性评估中的应用
Monika Kujdowicz et al.
The Analyst. 2023 Jan 16;148(2):278-285.
-
Bladder Urothelial Carcinoma: Machine Learning-based Computed Tomography Radiomics for Prediction of Histological Variant
基于机器学习的计算机断层扫描放射组学预测膀胱尿路上皮癌组织学亚型
Sehnaz Evrimler et al.
Academic radiology. 2022 Nov;29(11):1682-1689.
-
Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection
评估基于机器学习的无关造血细胞移植供者选择预后模型
Ljubomir Buturovic et al.
Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2018 Jun;24(6):1299-1306.
-
Addressing intra-tumoral heterogeneity and therapy resistance
应对肿瘤内异质性和治疗抵抗性
Brad Rybinski
Oncotarget. 2016 Nov 1;7(44):72322-72342.
-
Intra-tumoral heterogeneity of tumour potential doubling times (Tpot) in colorectal cancer
结直肠癌肿瘤倍增时间(Tpot)的瘤内异质性研究
M S Wilson et al.
British journal of cancer. 1993 Sep;68(3):501-6.
-
Disulfidptosis related immune genes drive prognostic model development and tumor microenvironment characterization in bladder urothelial carcinoma
双硫化物水解酶相关免疫基因驱动膀胱尿路上皮癌预后模型的发展和肿瘤微环境的特征分析
Shenchao Guo et al.
Scientific reports. 2025 Mar 8;15(1):8130.
-
Comprehensive machine learning-based integration develops a novel prognostic model for glioblastoma
基于全面机器学习的整合开发了胶质母细胞瘤新型预后模型
Qian Jiang et al.
Molecular therapy. Oncology. 2024 Jun 17;32(3):200838.

期刊名:Computer methods in biomechanics and biomedical engineering
缩写:COMPUT METHOD BIOMEC
ISSN:1025-5842
e-ISSN:1476-8259
IF/分区:1.6/Q4