首页 正文

PloS one. 2025 Jun 11;20(6):e0325676. doi: 10.1371/journal.pone.0325676 Q22.92024

EBBA-detector: An effective detector for defect detection in solar panel EL images with unbalanced data

基于不平衡数据的光伏组件EL图像缺陷检测方法EBBA-Detector 翻译改进

Yixing Zhang  1  2, Ziyan Mo  3, Zhuan Xin  1, Xianyu Chen  1, Yuqin Deng  1, Xuan Dong  4

作者单位 +展开

作者单位

  • 1 Geely University of China, Chengdu, Sichuan, China.
  • 2 Sichuan Zhengruosheng Technology Company Limited, Chengdu, Sichuan, China.
  • 3 Chengdu Xindu District Nanfeng primary school, Chengdu, Sichuan, China.
  • 4 Sichuan Shenhong Chemical Industry Company Limited, Chengdu, Sichuan, China.
  • DOI: 10.1371/journal.pone.0325676 PMID: 40498804

    摘要 中英对照阅读

    Solar panel defect detection, a crucial quality control task in the manufacturing process, often faces challenges such as varying defect sizes, severe image background interference, and imbalanced data sample distribution. To address these issues, this paper proposes the EBBA-Detector. The core of the model lies in an enhanced balanced attention framework, which includes an Enhanced Bidirectional Feature Pyramid Network (EBFPN) and a Balanced-Attention Module (B-A Module). The EBFPN captures defect features of different sizes, significantly improving the recognition ability for small defects, while the B-A Module suppresses background interference, guiding the model to focus more on defect locations. Additionally, this paper designs a Scaled Dynamic Focal Loss (SDFL) function, which enables the model to pay more attention to minority and hard-to-identify defect samples under imbalanced data distribution. Through experimental validation on a large-scale electroluminescence (EL) dataset, the proposed method has achieved significant improvements in detection performance, with a mean Average Precision (mAP) of 89.85%, outperforming other models in multiple defect category detections. Therefore, the EBBA-Detector not only effectively detects small target objects but also demonstrates good handling capabilities for large targets and imbalanced data, providing an efficient and accurate solution for solar panel defect detection.

    Keywords:solar panel; defect detection; unbalanced data

    太阳能电池板缺陷检测是制造过程中的一个重要质量控制任务,常常面临诸如不同大小的缺陷、严重图像背景干扰以及数据样本分布不平衡等问题。为了解决这些问题,本文提出了EBBA-Detector。该模型的核心在于增强平衡注意力框架,包括增强双向特征金字塔网络(EBFPN)和平衡注意模块(B-A 模块)。EBFPN能够捕捉不同大小的缺陷特征,显著提高了对小缺陷识别的能力,而B-A 模块则抑制了背景干扰,引导模型更关注缺陷位置。此外,本文还设计了一种比例动态焦点损失函数(SDFL),使模型在数据分布不平衡的情况下更加关注少数和难以识别的缺陷样本。通过大规模电致发光(EL)数据集上的实验验证,所提出的方法在检测性能上取得了显著改善,平均精度均值(mAP)达到了89.85%,在多个缺陷类别检测中超越了其他模型。因此,EBBA-Detector不仅有效地检测小目标物体,还展示了处理大目标和不平衡数据的良好能力,为太阳能电池板缺陷检测提供了高效且准确的解决方案。

    关键词:太阳能电池板; 缺陷检测; 不平衡数据

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © PloS one. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Plos one

    缩写:PLOS ONE

    ISSN:1932-6203

    e-ISSN:

    IF/分区:2.9/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    EBBA-detector: An effective detector for defect detection in solar panel EL images with unbalanced data