首页 正文

PloS one. 2025 Jun 11;20(6):e0323692. doi: 10.1371/journal.pone.0323692 Q22.92024

Refining CT image analysis: Exploring adaptive fusion in U-nets for enhanced brain tissue segmentation

基于U-Net的CT图像自适应融合分析及其脑组织分割研究 翻译改进

Bang-Chuan Chen  1, Chung-Yi Shen  2, Jyh-Wen Chai  3  4, Ren-Hung Hwang  5, Wei-Chuan Chiang  2, Chi-Hsiang Chou  1  3  6  7, Wei-Min Liu  2

作者单位 +展开

作者单位

  • 1 The Department of Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
  • 2 Department of Computer Science and Information Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chiayi, Taiwan, ROC.
  • 3 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC.
  • 4 Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
  • 5 College of Artificial Intelligence, National Yang Ming Chiao Tung University, Hsinchu, TaiwanROC.
  • 6 Department of Neurology, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
  • 7 Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
  • DOI: 10.1371/journal.pone.0323692 PMID: 40498784

    摘要 中英对照阅读

    Purpose: Non-contrast Computed Tomography (NCCT) quickly diagnoses acute cerebral hemorrhage or infarction. However, Deep-Learning (DL) algorithms often generate false alarms (FA) beyond the cerebral region.

    Methods: We introduce an enhanced brain tissue segmentation method for infarction lesion segmentation (ILS). This method integrates an adaptive result fusion strategy to confine the search operation within cerebral tissue, effectively reducing FAs. By leveraging fused brain masks, DL-based ILS algorithms focus on pertinent radiomic correlations. Various U-Net models underwent rigorous training, with exploration of diverse fusion strategies. Further refinement entailed applying a 9x9 Gaussian filter with unit standard deviation followed by binarization to mitigate false positives. Performance evaluation utilized Intersection over Union (IoU) and Hausdorff Distance (HD) metrics, complemented by external validation on a subset of the COCO dataset.

    Results: Our study comprised 20 ischemic stroke patients (14 males, 4 females) with an average age of 68.9 ± 11.7 years. Fusion with UNet2+ and UNet3 + yielded an IoU of 0.955 and an HD of 1.33, while fusion with U-net, UNet2 + , and UNet3 + resulted in an IoU of 0.952 and an HD of 1.61. Evaluation on the COCO dataset demonstrated an IoU of 0.463 and an HD of 584.1 for fusion with UNet2+ and UNet3 + , and an IoU of 0.453 and an HD of 728.0 for fusion with U-net, UNet2 + , and UNet3 + .

    Conclusion: Our adaptive fusion strategy significantly diminishes FAs and enhances the training efficacy of DL-based ILS algorithms, surpassing individual U-Net models. This methodology holds promise as a versatile, data-independent approach for cerebral lesion segmentation.

    Keywords:ct image analysis; adaptive fusion; u-nets; brain tissue segmentation

    目的: 非对比度计算机断层扫描(NCCT)能够快速诊断急性脑出血或梗死。然而,深度学习(DL)算法经常在脑部区域之外产生误报(FA)。

    方法: 我们引入了一种增强的脑组织分割方法用于梗死病灶分割(ILS)。该方法整合了自适应结果融合策略,将搜索操作限制在脑部组织内,从而有效减少误报。通过利用融合后的脑部掩模,基于DL的ILS算法能够聚焦于相关的放射学关联。各种U-Net模型经过严格训练,并探索了多种融合策略。进一步优化涉及应用9x9高斯滤波器并设置单位标准差,随后进行二值化处理以减少假阳性。性能评估使用交并比(IoU)和豪斯多夫距离(HD)指标,并通过在COCO数据集子集上的外部验证补充。

    结果: 我们的研究包括20名缺血性卒中患者(14名男性,4名女性),平均年龄为68.9 ± 11.7岁。UNet2+和UNet3 +融合得到IoU为0.955,HD为1.33;而与U-net、UNet2+及UNet3+的融合则分别获得IoU为0.952,HD为1.61。在COCO数据集上的评估显示,使用UNet2+和UNet3 +融合得到IoU为0.463,HD为584.1;而与U-net、UNet2+及UNet3+的融合则分别获得IoU为0.453,HD为728.0。

    结论: 我们的自适应融合策略显著减少了误报,并提高了基于DL的ILS算法的训练效率,超越了单一的U-Net模型。这种方法作为脑部病变分割的一种灵活且数据独立的方法具有广阔前景。

    关键词:自适应融合; U-Net; 脑组织分割

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © PloS one. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Plos one

    缩写:PLOS ONE

    ISSN:1932-6203

    e-ISSN:

    IF/分区:2.9/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Refining CT image analysis: Exploring adaptive fusion in U-nets for enhanced brain tissue segmentation