首页 正文

PloS one. 2025 Jun 11;20(6):e0325538. doi: 10.1371/journal.pone.0325538 Q22.92024

Forecasting monthly residential natural gas demand in two cities of Turkey using just-in-time-learning modeling

基于即时学习建模的土耳其两市月度居民天然气需求预测 翻译改进

Burak Alakent  1, Erkan Isikli  2, Cigdem Kadaifci  2, Tonguc S Taspinar  3

作者单位 +展开

作者单位

  • 1 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey.
  • 2 Department of Industrial Engineering, Faculty of Management, Istanbul Technical University, Istanbul, Turkey.
  • 3 SOCAR Türkiye, Vadistanbul Bulvar, Ayazağa Mahallesi, Azerbaycan Caddesi, Istanbul, Turkey.
  • DOI: 10.1371/journal.pone.0325538 PMID: 40498766

    摘要 中英对照阅读

    Natural gas (NG) is relatively a clean source of energy, particularly compared to fossil fuels, and worldwide consumption of NG has been increasing almost linearly in the last two decades. A similar trend can also be seen in Turkey, while another similarity is the high dependence on imports for the continuous NG supply. It is crucial to accurately forecast future NG demand (NGD) in Turkey, especially, for import contracts; in this respect, forecasts of monthly NGD for the following year are of utmost importance. In the current study, the historical monthly NG consumption data between 2014 and 2024 provided by SOCAR, the local residential NG distribution company for two cities in Turkey, Bursa and Kayseri, was used to determine out-of-sample monthly NGD forecasts for a period of one year and nine months using various time series models, including SARIMA and ETS models, and a novel proposed machine learning method. The proposed method, named Just-in-Time-Learning-Gaussian Process Regression (JITL-GPR), uses a novel feature representation for the past NG demand values; instead of using past demand values as column-wise separate features, they are placed on a two-dimensional (2-D) grid of year-month values. For each test point, a kernel function, tailored for the NGD predictions, is used in GPR to predict the query point. Since a model is constructed separately for each test point, the proposed method is, indeed, an example of JITL. The JITL-GPR method is easy to use and optimize, and offers a reduction in forecast errors compared to traditional time series methods and a state-of-the-art combination model; therefore, it is a promising tool for NGD forecasting in similar settings.

    Keywords:just-in-time-learning modeling; forecasting; turkeycities

    天然气(NG)是一种相对清洁的能源,特别是与化石燃料相比,并且在过去二十年中,全球天然气消费量几乎呈线性增长。在土耳其也可以看到类似的趋势,而另一个相似之处是持续供应天然气的高度依赖进口。特别是在签订进口合同时,准确预测土耳其未来的天然气需求(NGD)至关重要;在这方面,对未来一年的月度NGD预测尤为重要。目前的研究使用了SOCAR提供的历史月度天然气消费数据(2014年至2024年),SOCAR是土耳其两个城市——布尔萨和Kayseri本地居民天然气分配公司的数据,利用各种时间序列模型(包括SARIMA和ETS模型)以及一种新型提出的机器学习方法来确定为期一年九个月的月度NGD预测。所提出的方法名为Just-in-Time-Learning-Gaussian Process Regression (JITL-GPR),它使用了一种新颖的历史天然气需求值特征表示;与其将过去的需求值作为独立列特征,而是将其放置在年-月值构成的二维(2-D)网格上。对于每个测试点,在GPR中使用一种量身定制的内核函数来预测查询点。由于为每个测试点单独构建了一个模型,因此所提出的方法确实是一个即用型学习(JITL)的例子。JITL-GPR方法易于使用和优化,并且与传统的时间序列方法以及最先进的组合模型相比,在预测误差方面有所减少;因此,在类似环境中进行NGD预测时,它是一种有前景的工具。

    关键词:月度居民天然气需求; 即时学习模型; 预测; 土耳其城市

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © PloS one. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Plos one

    缩写:PLOS ONE

    ISSN:1932-6203

    e-ISSN:

    IF/分区:2.9/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Forecasting monthly residential natural gas demand in two cities of Turkey using just-in-time-learning modeling