首页 正文

The journal of physical chemistry. B. 2025 Jun 11. doi: 10.1021/acs.jpcb.5c02806 Q32.82024

Mechanism of the Oxygen-Evolving Process in the Water-Oxidizing Complex of Photosystem II, as Revealed by Time-Resolved Infrared Spectroscopy

时间分辨红外光谱揭示的光系统II中水氧化复合物的氧释放机制 翻译改进

Kiichi Sugie  1, Yuki Kato  1, Ryo Nagao  1, Takumi Noguchi  1

作者单位 +展开

作者单位

  • 1 Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
  • DOI: 10.1021/acs.jpcb.5c02806 PMID: 40498338

    摘要 中英对照阅读

    The molecular mechanism of photosynthetic water oxidation in photosystem II was investigated, focusing on the elusive O2-evolving S3 → S0 transition using time-resolved infrared spectroscopy, supported by quantum mechanics/molecular mechanics calculations. It was suggested that the initial ∼ 200 μs phase, which was significantly retarded by Cl- → NO3- substitution but not much by Ca2+ → Sr2+ substitution, is attributed to proton release from W1, promoted by YZ oxidation, via the Cl-1 channel. The resultant W1 = OH- form is in thermal equilibrium with the W2 = OH- form. The slow millisecond phase was significantly retarded by both Sr2+ and NO3- substitutions, maintaining electron transfer to YZ as the rate-limiting step even in very slow kinetics with simultaneous Sr2+/NO3- substitution, indicating that the hydrogen-bond network of water molecules between the Cl and Ca sites plays a crucial role in the electron transfer to form the transient S4 state. It is proposed that electron transfer is coupled with internal proton transfer from O6H- to W2(OH-) through this hydrogen-bond network. These results highlight the key role of the hydrogen-bond network in the catalytic site in the molecular mechanism of the O2-evolving process, the slowest step in photosynthetic water oxidation.

    Keywords:oxygen evolving process; water oxidizing complex; photosystem ii

    研究了光系统II中光合水氧化的分子机制,重点关注难以捉摸的O2-释放S3 → S0 转变,并使用时间分辨红外光谱和量子力学/分子力学计算进行了支持。研究表明,在初始约200微秒的阶段,Cl- → NO3- 替换显著延迟了这一过程,而Ca2+ → Sr2+ 替换影响不大。这归因于W1从质子释放并通过Cl-1通道由YZ氧化促进的质子释放。由此产生的W1 = OH- 形式与W2 = OH- 形式处于热平衡状态。在毫秒阶段,Sr2+ 和NO3- 替换都显著延迟了这一过程,并且即使是在同时进行的非常慢的Sr2+/NO3- 替换过程中,电子转移到YZ 仍然是限速步骤,这表明水分子之间的氢键网络在形成瞬态S4 状态的电子转移中起着关键作用。从Cl和Ca位点之间的位置可以看出,该氢键网络对内部质子从O6H- 到W2(OH-) 的传递与电子传输耦合。这些结果强调了在光合作用水氧化过程中最慢步骤的O2-释放过程分子机制中催化位点氢键网络的关键作用。

    关键词:氧气释放过程; 水分解酶活性中心; 光系统二; 时间分辨红外光谱学

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © The journal of physical chemistry. B. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of physical chemistry b

    缩写:J PHYS CHEM B

    ISSN:1520-6106

    e-ISSN:1520-5207

    IF/分区:2.8/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Mechanism of the Oxygen-Evolving Process in the Water-Oxidizing Complex of Photosystem II, as Revealed by Time-Resolved Infrared Spectroscopy