The molecular mechanism of photosynthetic water oxidation in photosystem II was investigated, focusing on the elusive O2-evolving S3 → S0 transition using time-resolved infrared spectroscopy, supported by quantum mechanics/molecular mechanics calculations. It was suggested that the initial ∼ 200 μs phase, which was significantly retarded by Cl- → NO3- substitution but not much by Ca2+ → Sr2+ substitution, is attributed to proton release from W1, promoted by YZ oxidation, via the Cl-1 channel. The resultant W1 = OH- form is in thermal equilibrium with the W2 = OH- form. The slow millisecond phase was significantly retarded by both Sr2+ and NO3- substitutions, maintaining electron transfer to YZ• as the rate-limiting step even in very slow kinetics with simultaneous Sr2+/NO3- substitution, indicating that the hydrogen-bond network of water molecules between the Cl and Ca sites plays a crucial role in the electron transfer to form the transient S4 state. It is proposed that electron transfer is coupled with internal proton transfer from O6H- to W2(OH-) through this hydrogen-bond network. These results highlight the key role of the hydrogen-bond network in the catalytic site in the molecular mechanism of the O2-evolving process, the slowest step in photosynthetic water oxidation.
The journal of physical chemistry. B. 2025 Jun 11. doi: 10.1021/acs.jpcb.5c02806 Q32.82024
Mechanism of the Oxygen-Evolving Process in the Water-Oxidizing Complex of Photosystem II, as Revealed by Time-Resolved Infrared Spectroscopy
时间分辨红外光谱揭示的光系统II中水氧化复合物的氧释放机制 翻译改进
作者单位 +展开
作者单位
DOI: 10.1021/acs.jpcb.5c02806 PMID: 40498338
摘要 中英对照阅读
研究了光系统II中光合水氧化的分子机制,重点关注难以捉摸的O2-释放S3 → S0 转变,并使用时间分辨红外光谱和量子力学/分子力学计算进行了支持。研究表明,在初始约200微秒的阶段,Cl- → NO3- 替换显著延迟了这一过程,而Ca2+ → Sr2+ 替换影响不大。这归因于W1从质子释放并通过Cl-1通道由YZ氧化促进的质子释放。由此产生的W1 = OH- 形式与W2 = OH- 形式处于热平衡状态。在毫秒阶段,Sr2+ 和NO3- 替换都显著延迟了这一过程,并且即使是在同时进行的非常慢的Sr2+/NO3- 替换过程中,电子转移到YZ• 仍然是限速步骤,这表明水分子之间的氢键网络在形成瞬态S4 状态的电子转移中起着关键作用。从Cl和Ca位点之间的位置可以看出,该氢键网络对内部质子从O6H- 到W2(OH-) 的传递与电子传输耦合。这些结果强调了在光合作用水氧化过程中最慢步骤的O2-释放过程分子机制中催化位点氢键网络的关键作用。
相关内容
-
Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors
含有Chl d的蓝藻Acaryochloris marina中光系统II水氧化复合体的反应特性的表征:内源电子供体和受体反应性
Physical chemistry chemical physics : PCCP. 2006 Aug 7;8(29):3460-6.
-
NO reversibly reduces the water-oxidizing complex of photosystem II through S0 and S-1 to the state characterized by the Mn(II)-Mn(III) multiline EPR signal
NO通过S0和S−1状态可逆地将光系统II的放氧复合物还原为以Mn(II)-Mn(III)多线EPR信号表征的状态
Biochemistry. 1998 Nov 24;37(47):16445-51.
-
Hydrogencarbonate is not a tightly bound constituent of the water-oxidizing complex in photosystem II
氢碳酸盐不是光系统II中水氧化复合物的紧密结合组分
Biochimica et biophysica acta. 2008 Jun;1777(6):532-9.
-
Effect of bicarbonate on the water-oxidizing complex of photosystem II in the super-reduced S-states
碳酸盐对水氧化复合物在超还原S态中的作用
Biochimica et biophysica acta. 2006 Apr;1757(4):253-61.
-
Structural Effects of Cl and Other Anions on the Water Oxidizing Complex of Chloroplast Photosystem II
Cl-和其他阴离子对类囊体光系统II水氧化复合物的结构效应
Plant physiology. 1988 Sep;88(1):194-9.
-
The S1 to S2 and S2 to S3 state transitions in plant photosystem II: relevance to the functional and structural heterogeneity of the water oxidizing complex
植物光系统II中S1到S2和S2到S3状态的转变:与水氧化复合物的功能和结构异质性的相关性
Photosynthesis research. 2024 Apr 25.
-
Interaction of molecular oxygen with the donor side of photosystem II after destruction of the water-oxidizing complex
破坏水氧化复合物后分子氧与光系统II供体侧的相互作用
Biochemistry. Biokhimiia. 2014 Mar;79(3):205-12.
-
Methanol modification of the electron paramagnetic resonance signals from the S(0) and S(2) states of the water-oxidizing complex of photosystem II
甲醇对光系统II水氧化复合物S(0)和S(2)状态的电子顺磁共振信号的影响
Biochimica et biophysica acta. 1999 Aug 4;1412(3):240-9.
-
Reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations using synthetic Mn complexes: a fluorine-19 NMR study of the reconstitution process
使用合成锰配合物重建缺锰的光系统II中水氧化复合物的氟-19 NMR研究
Photosynthesis research. 2008 Oct-Dec;98(1-3):277-84.