首页 正文

International journal of computer assisted radiology and surgery. 2025 Jun 11. doi: 10.1007/s11548-025-03439-5 Q32.32024

Enhancing generalization in zero-shot multi-label endoscopic instrument classification

增强零样本多标签内窥镜器械分类的泛化能力 翻译改进

Raphaela Maerkl  1, Tobias Rueckert  2  3, David Rauber  2, Max Gutbrod  2  4, Danilo Weber Nunes  2  4, Christoph Palm  2  4  5

作者单位 +展开

作者单位

  • 1 Regensburg Medical Image Computing (ReMIC), OTH Regensburg, 93053, Regensburg, Germany. raphaela.maerkl@st.oth-regensburg.de.
  • 2 Regensburg Medical Image Computing (ReMIC), OTH Regensburg, 93053, Regensburg, Germany.
  • 3 AKTORmed Robotic Surgery, 93073, Neutraubling, Germany.
  • 4 Regensburg Center of Health Sciences and Technology (RCHST), OTH Regensburg, 93053, Regensburg, Germany.
  • 5 Regensburg Center of Biomedical Engineering (RCBE), OTH Regensburg and Regensburg University, 93053, Regensburg, Germany.
  • DOI: 10.1007/s11548-025-03439-5 PMID: 40498241

    摘要 中英对照阅读

    Purpose: Recognizing previously unseen classes with neural networks is a significant challenge due to their limited generalization capabilities. This issue is particularly critical in safety-critical domains such as medical applications, where accurate classification is essential for reliability and patient safety. Zero-shot learning methods address this challenge by utilizing additional semantic data, with their performance relying heavily on the quality of the generated embeddings.

    Methods: This work investigates the use of full descriptive sentences, generated by a Sentence-BERT model, as class representations, compared to simpler category-based word embeddings derived from a BERT model. Additionally, the impact of z-score normalization as a post-processing step on these embeddings is explored. The proposed approach is evaluated on a multi-label generalized zero-shot learning task, focusing on the recognition of surgical instruments in endoscopic images from minimally invasive cholecystectomies.

    Results: The results demonstrate that combining sentence embeddings and z-score normalization significantly improves model performance. For unseen classes, the AUROC improves from 43.9 % to 64.9 %, and the multi-label accuracy from 26.1 % to 79.5 %. Overall performance measured across both seen and unseen classes improves from 49.3 % to 64.9 % in AUROC and from 37.3 % to 65.1 % in multi-label accuracy, highlighting the effectiveness of our approach.

    Conclusion: These findings demonstrate that sentence embeddings and z-score normalization can substantially enhance the generalization performance of zero-shot learning models. However, as the study is based on a single dataset, future work should validate the method across diverse datasets and application domains to establish its robustness and broader applicability.

    Keywords: Generalized zero-shot learning; Multi-label classification; Sentence embeddings; Surgical instruments; Z-score normalization.

    Keywords:zero-shot learning; multi-label classification; endoscopic instruments

    目的: 用神经网络识别以前未见过的类别是一个重大挑战,因为它们的泛化能力有限。这一问题在医疗应用等安全关键领域尤为严重,准确分类对于可靠性和患者安全至关重要。零样本学习方法通过利用额外的语义数据来解决这个问题,其性能很大程度上取决于生成嵌入的质量。

    方法: 这项工作研究了由Sentence-BERT模型生成的完整描述性句子作为类表示与从BERT模型衍生出的基于简单类别的词嵌入之间的效果差异。此外,还探讨了z-score标准化作为一种后处理步骤对这些嵌入的影响。该提议的方法在多标签广义零样本学习任务上进行了评估,重点关注微创胆囊切除术内窥镜图像中手术器械的识别。

    结果: 结果显示,结合句子嵌入和z-score标准化显著提高了模型性能。对于未见过的类别,AUROC从43.9%提升到64.9%,多标签准确率从26.1%提高到79.5%。整体性能在已见与未见类别的综合评估中,AUROC从49.3%提升至64.9%,多标签准确率从37.3%提高到65.1%,突显了我们方法的有效性。

    结论: 这些发现表明句子嵌入和z-score标准化可以显著增强零样本学习模型的泛化性能。然而,由于该研究基于单一数据集,未来的工作应在多样化的数据集中验证这种方法,并在不同的应用领域中建立其稳健性和更广泛的应用性。

    关键词: 广义零样本学习;多标签分类;句子嵌入;手术器械;z-score标准化。

    关键词:零样本学习; 多标签分类; 内窥镜仪器

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Enhancing generalization in zero-shot multi-label endoscopic instrument classification