首页 正文

Molecular diversity. 2025 Jun 11. doi: 10.1007/s11030-025-11232-4 Q23.92024

Machine learning and molecular modeling reveal potential inhibitors of the human metapneumovirus fusion protein

机器学习和分子建模发现的人类副流感病毒融合蛋白潜在抑制剂研究 翻译改进

Shatha Ghazi Felemban  1, Hayat Ali Alzahrani  2, Abdullah R Alzahrani  3, Zia Ur Rehman  4  5, Abdullah Yahya Abdullah Alzahrani  6, Abida Khan  7, Mohd Imran  8

作者单位 +展开

作者单位

  • 1 Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia.
  • 2 Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia.
  • 3 Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, 21955, Makkah, Saudi Arabia.
  • 4 Health Research Centre, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia.
  • 5 Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Jazan University, P.O. Box 114, 45142, Jazan, Kingdom of Saudi Arabia.
  • 6 Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Kingdom of Saudi Arabia.
  • 7 Center for Health Research, Northern Border University, 73213, Arar, Saudi Arabia.
  • 8 Center for Health Research, Northern Border University, 73213, Arar, Saudi Arabia. imran.pchem@gmail.com.
  • DOI: 10.1007/s11030-025-11232-4 PMID: 40498230

    摘要 中英对照阅读

    Respiratory infections by human metapneumovirus (HMPV) are common in children, those with weakened immune systems, and older people. With its important role in viral entry, viral fusion (F) glycoprotein is a prime target for designing drugs. To discover new inhibitors of the HMPV fusion protein as a class of drugs that can target this protein and stop it from causing disease, this study employs a computational drug design approach that includes density functional theory (DFT), molecular dynamics (MD), and machine learning (ML). With the help of molecular dynamics simulations, this study verifies the binding activity of lead compounds, optimizes them using calculations based on density functional theory to evaluate electronic properties, and then uses a machine learning-based virtual screening strategy to identify possible inhibitors. PSICHIC, ML model found five lead compounds with ligand 57,414,794 with the highest predicted binding affinity (7.413) and maximum antagonist probability (0.99998). Strong binding of 57,414,794 to the HMPV fusion protein was validated by molecular docking and MM/GBSA binding free energy calculation. The drug outperformed the reference compound Remdesivir with a binding free energy of - 27.46 kcal/mol by a big margin. MD simulations validated its stability with fewer structural fluctuations and good free energy landscape (FEL) characteristics. ADMET profiling also displayed excellent gastrointestinal absorption with no Lipinski violations, supporting the drug-likeness of identified compounds. These results contribute to the search for target-based drugs against HMPV and illustrate the role of machine learning-assisted computational drug design in infectious disease research.

    Keywords: DFT; HMPV; Inhibitors; MD simulation; Machine learning.

    Keywords:machine learning; molecular modeling; metapneumovirus fusion protein

    人副流感病毒6型(HMPV)引起的呼吸道感染在儿童、免疫系统较弱的人群以及老年人中很常见。由于其在病毒进入过程中的重要作用,病毒融合蛋白(F蛋白)是设计药物的重要靶点。为了发现针对HMPV融合蛋白的新抑制剂作为一类可以靶向该蛋白质并阻止其致病的药物,本研究采用了一种计算药物设计方法,包括密度泛函理论(DFT)、分子动力学(MD)和机器学习(ML)。借助于分子动力学模拟,这项研究验证了先导化合物的结合活性,并通过基于密度泛函理论的计算优化它们以评估电子特性,然后利用一种基于机器学习的虚拟筛选策略来识别可能的抑制剂。PSICHIC,一个ML模型发现了五种先导化合物,其中配体57,414,794具有最高的预测结合亲和力(7.413)和最大的拮抗概率(0.99998)。通过分子对接和MM/GBSA结合自由能计算验证了57,414,794与HMPV融合蛋白的强结合。该药物以较大的优势超过了参考化合物瑞德西韦,其结合自由能为-27.46 kcal/mol。MD模拟证实了它的稳定性,结构波动较少,并且具有良好的自由能景观(FEL)特性。ADMET分析也显示了极佳的胃肠道吸收能力,没有违反Lipinski规则,支持了所识别化合物的药物样性质。这些结果为针对HMPV的目标导向药物的研究做出了贡献,并展示了机器学习辅助计算药物设计在传染病研究中的作用。

    关键词:DFT;HMPV;抑制剂;MD模拟;机器学习。

    关键词:机器学习; 分子建模; 元肺炎病毒融合蛋白

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Molecular diversity. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Molecular diversity

    缩写:MOL DIVERS

    ISSN:1381-1991

    e-ISSN:1573-501X

    IF/分区:3.9/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Machine learning and molecular modeling reveal potential inhibitors of the human metapneumovirus fusion protein