Membranes based on polymer-grafted nanoparticles (PGNPs) have emerged as strong candidates for key gas separations due to their tunable permeability, selectivity, mechanical properties, and aging resistance. Here, we show the importance of keeping nanoparticles spatially well-dispersed through the whole process of grafting chains onto their surfaces─this is illustrated by measuring the gas-separation properties of PGNP membranes. Specifically, while we start with well-dispersed bare NPs in solution, this dispersion state is affected when we functionalize their surface with the polymer initiating agent, which then causes local NP agglomeration (i.e., effectively leading to a larger NP core, to which chains are grafted) and poor gas-separation performance relative to our previous results on PGNP membranes. Instead, when we cap the NPs with a protective layer that prevents NP agglomeration during surface functionalization, followed by grafted polymer synthesis, we obtain significantly higher gas permeabilities. While these results can be rationalized by the fact that the gas-permeation properties of smaller NPs grafted with polymer chains are better than those of larger NPs at the same effective grafting density and graft chain length, these results emphasize the important role of particle dispersion during all steps of the formation of PGNPs.
ACS macro letters. 2025 Jun 10:872-877. doi: 10.1021/acsmacrolett.5c00160 Q15.22025
Particle Dispersion Controls the Gas-Separation Properties of Polymer-Grafted Nanoparticle Membranes
粒子分散控制聚合物接枝纳米颗粒膜的气体分离性能 翻译改进
作者单位 +展开
作者单位
DOI: 10.1021/acsmacrolett.5c00160 PMID: 40495450
摘要 中英对照阅读
基于聚合物接枝纳米颗粒(PGNPs)的膜由于其可调的渗透性、选择性、机械性能和耐老化性,已成为关键气体分离过程中的强有力候选材料。在这里,我们展示了在整个将链接枝到纳米颗粒表面的过程中保持纳米颗粒空间良好分散的重要性——这一点通过测量PGNP膜的气体分离性能来说明。具体来说,在使用时我们将溶液中初始均匀分散的裸露NPs进行表面功能化处理以添加聚合物引发剂后,这一分散状态受到影响,导致局部NPs聚集(即有效形成了更大的NP核心,然后在此基础上接枝链),从而相对于我们之前关于PGNP膜的结果表现出较差的气体分离性能。相反,在对NPs进行表面功能化前用保护层封端,防止NPs在该过程中的聚集,并随后进行接枝聚合物合成,则可以获得显著更高的气体渗透性。虽然这些结果可以通过以下事实来解释:与较大NP相比,在相同有效接枝密度和接枝链长度下,较小的NP接枝聚合物链后的气体渗透性能更好,但它们强调了在PGNPs形成过程中所有步骤中颗粒分散的重要作用。
相关内容
-
Polymer-Grafted Nanoparticles with Precisely Controlled Structures
结构可控的聚合物接枝纳米颗粒
ACS macro letters. 2015 Oct 20;4(10):1067-1071.
-
How Do Surface Properties of Nanoparticles Influence Their Diffusion in the Extracellular Matrix? A Model Study in Matrigel Using Polymer-Grafted Nanoparticles
纳米粒子的表面特性如何影响其在细胞外基质中的扩散?一项使用接枝聚合物的纳米颗粒在Matrigel中进行的模型研究
Langmuir : the ACS journal of surfaces and colloids. 2020 Sep 8;36(35):10460-10470.
-
Assembly of Polymer-Grafted Nanoparticles in Polymer Matrices
聚合物接枝纳米颗粒在聚合物基体中的组装
ACS nano. 2020 Oct 27;14(10):13491-13499.
-
Superdiffusive Thermal Transport in Polymer-Grafted Nanoparticle Melts
接枝纳米颗粒熔体中的超扩散热传导
Physical review letters. 2024 Dec 13;133(24):248101.
-
Self-Assembly of Polymer Grafted Nanoparticles within Spherically Confined Diblock Copolymers
嵌段聚合物球形 confinement 中接枝纳米粒子的自组装行为
The journal of physical chemistry. B. 2020 Dec 24;124(51):11738-11749.
-
Simulation of the Coronal Dynamics of Polymer-Grafted Nanoparticles
聚缔合物纳米颗粒的冠状动力学模拟
ACS polymers Au. 2021 Dec 13;2(3):157-168.
-
Diffusion of polymer-grafted nanoparticles in a homopolymer matrix
嵌段共聚物接枝纳米颗粒在均聚物基体中的扩散行为研究
The Journal of chemical physics. 2019 Jan 28;150(4):044905.
-
Erratum: "Characterizing the shear response of polymer-grafted nanoparticles" [J. Chem. Phys. 160, 134903 (2024)]
勘误:“聚合物接枝纳米粒子的剪切响应特征”[J. Chem. Phys. 160, 134903 (2024)]
The Journal of chemical physics. 2024 Jul 14;161(2):029902.
-
Unusual dynamical arrest in polymer grafted nanoparticles
聚合物嫁接纳米颗粒中的非寻常动力学阻滞现象
The Journal of chemical physics. 2009 Mar 28;130(12):121102.