首页 正文

International journal of computer assisted radiology and surgery. 2025 Jun 10. doi: 10.1007/s11548-025-03402-4 Q32.32024

Uncertainty estimation for trust attribution to speed-of-sound reconstruction with variational networks

基于变分网络的速度重建可信度评估及不确定性估计 翻译改进

Sonia Laguna  1, Lin Zhang  1, Can Deniz Bezek  2, Monika Farkas  3, Dieter Schweizer  1, Rahel A Kubik-Huch  3, Orcun Goksel  4  5

作者单位 +展开

作者单位

  • 1 Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland.
  • 2 Department of Information Technology, Uppsala University, Uppsala, Sweden.
  • 3 Department of Radiology, Kantonsspital Baden (Affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich), Baden, Switzerland.
  • 4 Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland. orcun.goksel@it.uu.se.
  • 5 Department of Information Technology, Uppsala University, Uppsala, Sweden. orcun.goksel@it.uu.se.
  • DOI: 10.1007/s11548-025-03402-4 PMID: 40495100

    摘要 中英对照阅读

    Purpose: Speed-of-sound (SoS) is a biomechanical characteristic of tissue, and its imaging can provide a promising biomarker for diagnosis. Reconstructing SoS images from ultrasound acquisitions can be cast as a limited-angle computed-tomography problem, with variational networks being a promising model-based deep learning solution. Some acquired data frames may, however, get corrupted by noise due to, e.g., motion, lack of contact, and acoustic shadows, which in turn negatively affects the resulting SoS reconstructions.

    Methods: We propose to use the uncertainty in SoS reconstructions to attribute trust to each individual acquired frame. Given multiple acquisitions, we then use an uncertainty-based automatic selection among these retrospectively, to improve diagnostic decisions. We investigate uncertainty estimation based on Monte Carlo Dropout and Bayesian Variational Inference.

    Results: We assess our automatic frame selection method for differential diagnosis of breast cancer, distinguishing between benign fibroadenoma and malignant carcinoma. We evaluate 21 lesions classified as BI-RADS 4, which represents suspicious cases for probable malignancy. The most trustworthy frame among four acquisitions of each lesion was identified using uncertainty-based criteria. Selecting a frame informed by uncertainty achieved an area under curve of 76% and 80% for Monte Carlo Dropout and Bayesian Variational Inference, respectively, superior to any uncertainty-uninformed baselines with the best one achieving 64%.

    Conclusion: A novel use of uncertainty estimation is proposed for selecting one of multiple data acquisitions for further processing and decision making.

    Keywords: Breast cancer differential diagnosis; Image reconstruction; Ultrasonography.

    Keywords:speed-of-sound reconstruction; variational networks; uncertainty estimation

    目的: 声速(SoS)是组织的一种生物力学特性,其成像可以为诊断提供有前景的生物标志物。从超声波采集重建声速图像可以被看作是一个受限角度的计算机断层扫描问题,变分网络是一种基于模型的深度学习解决方案。然而,由于运动、缺乏接触和声影等因素,一些获取的数据帧可能会受到噪声污染,进而影响最终的声速重建效果。

    方法: 我们提出使用声速重建中的不确定性来赋予每个单独获取的数据帧以信任度。在获得多个采集数据后,我们可以基于不确定性进行自动选择,从而改进诊断决策。我们研究了基于蒙特卡洛Dropout和贝叶斯变分推断的不确定性估计。

    结果: 我们评估了我们的自动帧选择方法在乳腺癌鉴别诊断中的应用,区分良性纤维腺瘤和恶性癌的情况。我们评估了21个被分类为BI-RADS 4级(代表可能恶性的可疑病例)的病变。使用基于不确定性的标准确定每个病变的四个获取数据中最值得信赖的帧。根据不确定性选择一帧分别实现了76%和80%的曲线下面积,优于任何不考虑不确定性的基线方法,其中最佳的方法实现的曲线下面积为64%。

    结论: 提出了一种新颖的利用不确定性估计从多个数据采集选择一个用于进一步处理和决策的新方法。

    关键词: 乳腺癌鉴别诊断;图像重建;超声成像。

    关键词:声速重建; 变分网络; 不确定性估计

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Uncertainty estimation for trust attribution to speed-of-sound reconstruction with variational networks