99mTc-TRODAT-1 SPECT is effective for the early detection of Parkinson's disease (PD). However, SPECT images suffer from severe partial volume effect, which impairs tissue boundary clarity and subsequent quantification accuracy. This work proposes an anatomical prior- and segmentation-free deep learning (DL)-based partial volume correction (PVC) method using an attentionbased conditional generative adversarial network (Att-cGAN) for 99mTc-TRODAT-1 SPECT. A population of 454 digital brain phantoms modelling anatomical and 99mTc-TRODAT activity variations in different PD categories are used to generate realistic SPECT projections using the SIMIND Monte Carlo code, and then reconstructed using ordered subset expectation maximization algorithm. The dataset is split into 320, 44 and 90 used for training, validation, and testing. Att-cGAN, cGAN and U-Net are implemented based on simulated data, then directly tested on 100 retrospectively collected clinical 99mTc-TRODAT data, with same acquisition and reconstruction parameters as in simulations. Non-DL PVC methods of Van-Cittert and iterative Yang are implemented for comparison. Physical and clinical metrics, as well as a no-gold standard technique (NGST) are applied to evaluate different PVC methods in the absence of clinical ground truth. Att-cGAN yields superior PVC performance in simulations as compared to other methods in physical and clinical evaluations. NGST assessment is generally consistent with the clinical metric evaluation. For the clinical study, Att-cGAN also obtains better NGST result than others striatal compartments can be discriminated on DLbased processed images. DL-PVC method is feasible for clinical PD SPECT using highly realistic simulated data.
IEEE journal of biomedical and health informatics. 2025 Jun 10:PP. doi: 10.1109/JBHI.2025.3578526 Q16.82025
Deep-learning-based Partial Volume Correction in 99mTc-TRODAT-1 SPECT for Parkinson's Disease: A Preliminary Study on Clinical Translation
基于深度学习的帕金森病~(99)Tc-TRODAT-1 SPECT 成像部分容积效应校正的初步临床转化研究 翻译改进
作者单位 +展开
作者单位
DOI: 10.1109/JBHI.2025.3578526 PMID: 40493467
摘要 中英对照阅读
99mTc-TRODAT-1 SPECT 对帕金森病(PD)的早期检测非常有效。然而,SPECT 图像会受到严重的部分容积效应的影响,这会影响组织边界的清晰度和后续量化准确性。本文提出了一种基于注意力机制的条件生成对抗网络 (Att-cGAN) 的解剖先验信息和分割无关的深度学习(DL)方法来进行99mTc-TRODAT-1 SPECT的部分容积校正(PVC)。使用了454个模拟大脑体模的数据,这些体模描绘了不同PD分类中解剖结构和99mTc-TRODAT 活性变化的情况,并利用SIMIND蒙特卡洛代码生成真实的SPECT投影图像,然后通过有序子集期望最大化算法进行重建。数据被分为320、44和90用于训练、验证和测试。基于模拟数据实施了Att-cGAN、cGAN 和U-Net方法,然后直接在100个回顾性收集的临床99mTc-TRODAT 数据上进行测试,其采集和重建参数与模拟时相同。为了比较,还实现了Van-Cittert 和迭代Yang非DL PVC 方法。通过物理和临床指标以及无金标准技术(NGST)来评估不同PVC方法在没有临床真实值的情况下表现如何。Att-cGAN 在物理和临床评价中的仿真中均表现出优于其他方法的PVC性能。NGST 评估通常与临床指标评价一致。对于临床研究,Att-cGAN也获得了比其他方法更好的NGST结果,DL处理后的图像可以区分纹状体各部分。使用高度逼真的模拟数据进行临床PD SPECT 的DL-PVC 方法是可行的。
相关内容
-
Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson's disease
帕金森病早期~(99)mTC-TRODAT-1显像诊断准确性分析
Parkinsonism & related disorders. 2004 Aug;10(6):375-9.
-
Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson's disease from healthy subjects
99mTc-TRODAT-1显像鉴别帕金森病与正常人的敏感度和特异度研究
Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2004 Mar;45(3):393-401.
-
Deep learning-based partial volume correction in standard and low-dose positron emission tomography-computed tomography imaging
基于深度学习的校正标准和低剂量正电子发射断层扫描- X线计算机断层成像中的部分容积效应
Quantitative imaging in medicine and surgery. 2024 Mar 15;14(3):2146-2164.
-
Towards accurate partial volume correction in 99mTc oncology SPECT: perturbation for case-specific resolution estimation
基于扰动的病例特异性分辨力估计的99mTC肿瘤学SPECT精确部分容积效应校正方法研究
EJNMMI physics. 2022 Sep 5;9(1):59.
-
Comparison of region-of-interest analysis and human observers in the diagnosis of Parkinson's disease using [99mTc]TRODAT-1 and SPECT
帕金森病的诊断中[99mTc]TRODAT-1和单光子发射计算机断层成像术(SPECT)区域感兴趣分析与人工观察者的比较研究
Physics in medicine and biology. 2006 Feb 7;51(3):575-85.
-
A Deep-Learning-Based Partial-Volume Correction Method for Quantitative 177Lu SPECT/CT Imaging
基于深度学习的偏体积校正方法用于定量177Lu SPECT/CT影像学检查
Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2024 Jun 3;65(6):980-987.
-
Usefulness of brain 99mTc-TRODAT-1 SPET for the evaluation of Parkinson's disease
脑99mTc-TRODAT-1单光子发射计算机断层扫描成像技术(SPECT)在帕金森病评价中的作用
European journal of nuclear medicine and molecular imaging. 2004 Feb;31(2):155-61.
-
Differences of various region-of-interest methods for measuring dopamine transporter availability using 99mTc-TRODAT-1 SPECT
不同感兴趣区方法在99mTc-TRODAT-1显像测量多巴胺转运蛋白可用性中的差异
TheScientificWorldJournal. 2014:2014:837439.
-
[Neuroimaging of the dopamine transporter in Parkinsons disease: first study using [99mTc]-TRODAT-1 and SPECT in Brazil]
帕金森病的多巴胺转运蛋白神经影像学检查——巴西首例使用[Tc-99m]TRODAT-1和SPECT的研究
Arquivos de neuro-psiquiatria. 2006 Sep;64(3A):628-34.

期刊名:Ieee journal of biomedical and health informatics
缩写:IEEE J BIOMED HEALTH
ISSN:2168-2194
e-ISSN:2168-2208
IF/分区:6.8/Q1