首页 正文

Journal of biomedical informatics. 2025 Jun 6:104836. doi: 10.1016/j.jbi.2025.104836 Q24.02024

An attention-based framework for integrating WSI and genomic data in cancer survival prediction

一种基于注意力的框架:整合全切片数字图像和基因组数据进行癌症生存预测 翻译改进

Genlang Chen  1, Sixuan Sui  2, Jiajian Zhang  3, Xuan Liu  4, Ping Cai  5

作者单位 +展开

作者单位

  • 1 School of Computer Science and Data Engineering, NingboTech University, China. Electronic address: cgl@zju.edu.cn.
  • 2 College of Computer Science, Zhejiang University, China. Electronic address: suisixuan@zju.edu.cn.
  • 3 School of Computer Science and Data Engineering, NingboTech University, China. Electronic address: 403522093@qq.com.
  • 4 School of Computer Science and Data Engineering, NingboTech University, China. Electronic address: liuxuan@nbt.edu.cn.
  • 5 Ningbo No. 2 Hospital, China. Electronic address: caipingxs@163.com.
  • DOI: 10.1016/j.jbi.2025.104836 PMID: 40484188

    摘要 中英对照阅读

    Objective: Cancer survival prediction plays a vital role in enhancing medical decision-making and optimizing patient management. Accurate survival estimation enables healthcare providers to develop personalized treatment plans, improve treatment outcomes, and identify high-risk patients for timely intervention. However, existing methods often rely on single-modality data or suffer from excessive computational complexity, limiting their practical application and the full potential of multimodal integration.

    Methods: To address these challenges, we propose a novel multimodal survival prediction framework that integrates Whole Slide Image (WSI) and genomic data. The framework employs attention mechanisms to model intra-modal and inter-modal correlations, effectively capturing complex dependencies within and between modalities. Additionally, locality-sensitive hashing is applied to optimize the self-attention mechanism, significantly reducing computational costs while maintaining predictive performance, enabling the model to handle large-scale or high-resolution WSI datasets efficiently.

    Results: Extensive experiments on the TCGA-BLCA dataset validate the effectiveness of the proposed approach. The results demonstrate that integrating WSI and genomic data improves survival prediction accuracy compared to unimodal methods. The optimized self-attention mechanism further enhances model efficiency, allowing for practical implementation on large datasets.

    Conclusion: The proposed framework provides a robust and efficient solution for cancer survival prediction by leveraging multimodal data integration and optimized attention mechanisms. This study highlights the importance of multimodal learning in medical applications and offers a promising direction for future advancements in AI-driven clinical decision support systems.

    Keywords: Attention mechanisms; Cancer survival prediction; Genomic data; Multimodal prediction; WSI.

    Keywords:attention based framework; wsi and genomic data; cancer survival prediction

    目标: 癌症生存预测在增强医疗决策和优化患者管理方面起着至关重要的作用。准确的生存估计使医疗服务提供者能够制定个性化的治疗计划,改善治疗结果,并及时识别高风险患者进行干预。然而,现有的方法往往依赖单一模态数据或因计算复杂度过高而受到限制,这制约了其实际应用以及多模态整合的全部潜力。

    方法: 为了解决这些问题,我们提出了一种新颖的多模态生存预测框架,该框架结合了全滑动图像(WSI)和基因组数据。该框架采用注意机制来建模模内和跨模之间的相关性,有效地捕捉到了模态内部和之间复杂的依赖关系。此外,局部敏感哈希被应用于优化自我注意机制,在保持预测性能的同时显著降低了计算成本,使模型能够高效地处理大规模或高分辨率的WSI数据集。

    结果: 在TCGA-BLCA数据集上的广泛实验验证了所提方法的有效性。结果显示,结合WSI和基因组数据提高了生存预测准确率,优于单一模态方法。优化后的自我注意机制进一步增强了模型的效率,使其能够实现在大规模数据集上的实际应用。

    结论: 通过利用多模态数据整合及优化注意力机制,所提出的框架为癌症生存预测提供了一种稳健且高效的解决方案。本研究强调了在医学应用中进行多模态学习的重要性,并为未来人工智能驱动的临床决策支持系统的发展提供了有前景的方向。

    关键词: 注意机制;癌症生存预测;基因组数据;多模态预测;WSI。

    关键词:基于注意力的框架; 癌症生存预测

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of biomedical informatics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of biomedical informatics

    缩写:J BIOMED INFORM

    ISSN:1532-0464

    e-ISSN:1532-0480

    IF/分区:4.0/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    An attention-based framework for integrating WSI and genomic data in cancer survival prediction