首页 正文

Review Echocardiography (Mount Kisco, N.Y.). 2025 Jun;42(6):e70201. doi: 10.1111/echo.70201 Q31.42025

From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy

从获取到预后:人工智能在缺血性心肌病心脏磁共振成像评估中的作用 翻译改进

Giuseppe Muscogiuri  1  2, Nicola Pegoraro  3, Alberto Cossu  4, Alessandro Caruso  2, Davide Casartelli  2, Francesco Severi  2, Gabrielle Gershon  5, Marly van Assen  5, Carlo N De Cecco  5, Marco Guglielmo  6, Tommaso D'Angelo  7, Luca Saba  8, Riccardo Cau  8, Paolo Marra  1  2, Aldo Carnevale  3, Melchiore Giganti  3, Sandro Sironi  1  2

作者单位 +展开

作者单位

  • 1 Department of Radiology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy.
  • 2 School of Medicine, University of Milano-Bicocca, Milan, Italy.
  • 3 Department of Translational Medicine - Section of Radiology, University of Ferrara, Ferrara, Italy.
  • 4 Department of Radiology and Laboratory Medicine, University Hospital of Ferrara, Ferrara, Italy.
  • 5 Department of Radiology and Imaging Sciences, Emory University, Atlanta, USA.
  • 6 Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • 7 Diagnostic and Interventional Radiology Unit, Department of Dental and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy.
  • 8 Department of Radiology, Azienda Ospedaliero Universitaria of Cagliari, Cagliari, Italy.
  • DOI: 10.1111/echo.70201 PMID: 40483710

    摘要 中英对照阅读

    Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.

    Keywords: artificial intelligence; cardiac magnetic resonance; deep learning; ischemic cardiomyopathy; late gadolinium enhancement; machine learning.

    Keywords:ischemic cardiomyopathy; artificial intelligence

    急性缺血性心肌病(ICM)仍然是导致发病率和死亡率的主要原因之一。心脏磁共振成像(CMR)在诊断和管理 ICM 中起着核心作用,提供详细的心脏结构和功能可视化。人工智能(AI)在增强 CMR 检查中的角色正在临床实践中迅速扩展,特别是在 ICM 患者的 CMR 中强调了将 AI 算法集成到标准协议中以优化成像工作流程的重要性。先进的 AI 模型使图像采集更加高效和快速,减少伪影并提高准确性,甚至提供无呼吸序列。在后处理过程中,AI 允许对心脏参数进行分割和量化,便于精确评估体积、心肌瘢痕和灌注异常,这些是 ICM 中的关键参数。此外,基于 AI 的分析通过全面的数据整合和模式识别提供了可靠的预后见解,预测不良结果,如心力衰竭和心律失常。展望未来,AI 在 CMR 中的发展前景在于进一步推动个性化医疗的进步,随着准确性和临床适用性的持续提高。本综述将分析 AI 在提高 ICM 患者的诊断准确性、优化工作流程和改善预后方面的作用。

    关键词:人工智能;心脏磁共振成像;深度学习;缺血性心肌病;延迟钆增强;机器学习。

    关键词:心脏磁共振成像; 缺血性心肌病; 人工智能

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Echocardiography (Mount Kisco, N.Y.). 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Echocardiography-a journal of cardiovascular ultrasound and allied techniques

    缩写:ECHOCARDIOGR-J CARD

    ISSN:0742-2822

    e-ISSN:1540-8175

    IF/分区:1.4/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy