首页 正文

Medical & biological engineering & computing. 2025 Jun 7. doi: 10.1007/s11517-025-03393-z Q32.62024

Real-time estimations of blood glucose concentrations from sweat measurements using the local density random walk model

基于局部密度随机游走模型从汗液检测实时估计血糖浓度 翻译改进

Xiaoyu Yin  1, Elisabetta Peri  2, Eduard Pelssers  3, Jaap den Toonder  3, Massimo Mischi  2

作者单位 +展开

作者单位

  • 1 Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven , Noord-Brabant, Netherlands. x.yin@tue.nl.
  • 2 Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven , Noord-Brabant, Netherlands.
  • 3 Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven , Noord-Brabant, Netherlands.
  • DOI: 10.1007/s11517-025-03393-z PMID: 40483382

    摘要 中英对照阅读

    Sweat provides a non-invasive alternative to blood draws, enabling glucose-concentration monitoring for both healthy individuals and diabetic patients. In our previous work, we demonstrated a strategy that accurately estimates blood glucose concentrations from sweat measurements. However, this method involves time-consuming simulations using a biophysical model, limiting its application to offline use. The goal of this study is to propose an approach that increases computational efficiency, thereby facilitating real-time estimation of blood glucose concentrations using sweat-sensing technology. To this end, we propose replacing the original biophysical model with the Local Density Random Walk (LDRW) model. This is justified because both models describe the pharmacokinetics of glucose transport through a convective-diffusion process. The performance of the LDRW model and the original biophysical model are compared in terms of estimation accuracy, computational efficiency, and model complexity, using seven datasets from the literature. The estimation of blood glucose concentrations using the LDRW model closely approximates that of the original model, with a root mean square difference of just 0.04 mmol/L between the two models' estimates. Remarkably, the LDRW model significantly reduces the average computational time to 2.6 s per data point, representing only 0.7% of the time required by the original method. Furthermore, the LDRW model demonstrates a smaller corrected Akaike Information Criterion value than the original method, indicating an improved balance between goodness of fit and model complexity. The proposed novel approach paves the way for the clinical adoption of sweat-sensing technology for non-invasive, real-time monitoring of diabetes.

    Keywords: Diabetes; Patient monitoring; Pharmacokinetic modeling; Sweat sensing.

    Keywords:real-time estimation; blood glucose concentration; sweat measurement

    汗液提供了一种非侵入性的替代方法,可以用于健康人群和糖尿病患者的血糖浓度监测。在我们之前的工作中,我们展示了一种能够从汗液测量准确估计血浆葡萄糖浓度的策略。然而,这种方法需要使用生物物理模型进行耗时的模拟,从而限制了它的应用仅限于离线使用。本研究的目标是提出一种提高计算效率的方法,从而使利用汗液传感技术实时估算血糖浓度成为可能。为此,我们建议用局部密度随机游走(LDRW)模型来替代原来的生物物理模型。这一提议是有道理的,因为这两种模型都描述了葡萄糖通过对流-扩散过程运输的药代动力学特性。使用来自文献的七个数据集,我们在估计准确性、计算效率和模型复杂性方面比较了 LDRW 模型与原始生物物理模型的表现。结果表明,LDRW 模型估算的血浆葡萄糖浓度非常接近于原模型的结果,两者之间的均方根差异仅为 0.04 mmol/L。值得注意的是,LDRW 模型将平均计算时间显著降低到每数据点2.6秒,仅相当于原始方法所需时间的0.7%。此外,LDRW 模型显示出了比原方法更小的校正赤池信息准则值,表明在拟合优度和模型复杂性之间取得了更好的平衡。所提出的这一创新方法为汗液传感技术在非侵入性和实时糖尿病监测中的临床应用铺平了道路。

    关键词:糖尿病;患者监测;药代动力学建模;汗液传感。

    关键词:实时估计; 血糖浓度; 汗液测量; 局部密度随机游走模型

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Medical & biological engineering & computing. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Medical & biological engineering & computing

    缩写:MED BIOL ENG COMPUT

    ISSN:0140-0118

    e-ISSN:1741-0444

    IF/分区:2.6/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Real-time estimations of blood glucose concentrations from sweat measurements using the local density random walk model