首页 正文

Journal of biomedical informatics. 2025 Jun 4:104855. doi: 10.1016/j.jbi.2025.104855 Q24.02024

GRU-TV: Time- and Velocity-aware Gated Recurrent Unit for patient representation

基于时空门控递归单元的患者表征模型 翻译改进

Ningtao Liu  1, Shuiping Gou  2, Ruoxi Gao  3, Binxiao Su  4, Wenbo Liu  5, Claire K S Park  6, Shuwei Xing  6, Jing Yuan  7, Aaron Fenster  6

作者单位 +展开

作者单位

  • 1 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, 710071, Shaanxi, China; Robarts Research Institute, Western University, London, N6A 5B7, ON, Canada.
  • 2 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, 710071, Shaanxi, China. Electronic address: shpgou@mail.xidian.edu.cn.
  • 3 Ohio State University, Columbus, OH, USA.
  • 4 Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
  • 5 Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, 261000, Shandong, China.
  • 6 Robarts Research Institute, Western University, London, N6A 5B7, ON, Canada.
  • 7 College of Mathematical Medicine, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
  • DOI: 10.1016/j.jbi.2025.104855 PMID: 40480410

    摘要 中英对照阅读

    Objective: The multivariate clinical temporal series (MCTS) extracted from electronic health records (EHRs) can characterize the dynamic physiological processes. Previous deep patient representation models were proposed to address imputation values and irregular sampling in MCTS. However, the change in physiological status, particularly instantaneous velocity, has not received adequate attention.

    Methods: To address this gap, we propose a Time- and Velocity-aware Gated Recurrent Unit (GRU-TV) model for patient representation learning. In the GRU-TV model, we apply the neural ordinary differential equation to describe the instantaneous velocity of the patient's physiological status. This instantaneous velocity is embedded in the hidden state updating process of the basic GRU model for the awareness of uneven time intervals. Besides, the forward propagation of the GRU-TV model also incorporates this instantaneous velocity to enable the perception of non-uniform changes in the patient's physiological status over time.

    Results: The performance of the GRU-TV model is evaluated on multiple clinical concerns across two real-world datasets. The average AUC for the sub-tasks on the complete, 70% sampled, and 50% sampled PhysioNet2012 datasets are 0.89, 0.84, and 0.83, respectively. The average AUC for the acute care phenotype classification on the complete, 20% sampled, and 10% sampled MIMIC-III datasets are 0.84, 0.82, and 0.80, respectively. The mean absolute deviation of the length-of-stay regression task is 1.84 days.

    Conclusion: The superior performance underscores the importance of instantaneous physiological changes in patient representation and clinical decision-making, particularly under challenging data conditions.

    Keywords: Electronic health records; Irregularly sampled series; Ordinary differential equation; Patient representation learning.

    Keywords:gated recurrent unit; time awareness; velocity awareness; patient representation

    目标: 从电子健康记录(EHRs)中提取的多变量临床时间序列(MCTS)可以表征动态生理过程。之前提出的深度患者表示模型旨在解决MCTS中的插补值和不规则抽样问题,然而,生理状态的变化,特别是瞬时速度,尚未得到足够的重视。

    方法: 为了解决这一缺口,我们提出了一种时间和速度感知的门控循环单元(GRU-TV)模型用于患者表示学习。在GRU-TV模型中,我们将神经常微分方程应用于描述患者生理状态的瞬时速度,并将其嵌入到基本GRU模型的状态更新过程中以适应不均匀的时间间隔。此外,GRU-TV模型的前向传播也融入了这种瞬时速度,使模型能够感知随时间变化的非匀速患者的生理状态。

    结果: 我们在两个真实世界的数据集上评估了GRU-TV模型在多个临床问题上的性能。对于完整的、70%抽样和50%抽样的PhysioNet2012数据集,子任务的平均AUC分别为0.89、0.84和0.83。对于MIMIC-III数据集中完全的、20%抽样和10%抽样的急性护理表型分类任务,平均AUC分别为0.84、0.82和0.80。住院天数回归任务的平均绝对误差为1.84天。

    结论: 卓越的表现突显了瞬时生理变化在患者表示及临床决策中的重要性,特别是在数据条件挑战的情况下。

    关键词: 电子健康记录;不规则抽样序列;常微分方程;患者表示学习

    关键词:门控循环单元; 时间感知; 速度感知

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Journal of biomedical informatics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Journal of biomedical informatics

    缩写:J BIOMED INFORM

    ISSN:1532-0464

    e-ISSN:1532-0480

    IF/分区:4.0/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    GRU-TV: Time- and Velocity-aware Gated Recurrent Unit for patient representation