首页 正文

International journal of computer assisted radiology and surgery. 2025 Jun 6. doi: 10.1007/s11548-025-03404-2 Q32.32024

Adaptive sensitivity-fisher regularization for heterogeneous transfer learning of vascular segmentation in laparoscopic videos

自适应敏感性-Fisher正则化在腹腔镜视频血管分割中的异构迁移学习中的应用 翻译改进

Xinkai Zhao  1, Yuichiro Hayashi  2, Masahiro Oda  2  3, Takayuki Kitasaka  4, Kazunari Misawa  5, Kensaku Mori  6  7  8

作者单位 +展开

作者单位

  • 1 Graduate School of Informatics, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi, Japan. xkzhao@mori.m.is.nagoya-u.ac.jp.
  • 2 Graduate School of Informatics, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi, Japan.
  • 3 Information Technology Center, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi, Japan.
  • 4 School of Information Science, Aichi Institute of Technology, 1247 Yachigusa, Yagasa-cho, Toyota, Aichi, Japan.
  • 5 Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan.
  • 6 Graduate School of Informatics, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi, Japan. kensaku@is.nagoya-u.ac.jp.
  • 7 Information Technology Center, Nagoya University, Furo-cho, Chikusaku, Nagoya, Aichi, Japan. kensaku@is.nagoya-u.ac.jp.
  • 8 Research Center for Medical Bigdata, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan. kensaku@is.nagoya-u.ac.jp.
  • DOI: 10.1007/s11548-025-03404-2 PMID: 40478473

    摘要 中英对照阅读

    Purpose: This study aims to enhance surgical safety by developing a method for vascular segmentation in laparoscopic surgery videos with limited visibility. We introduce an adaptive sensitivity-fisher regularization (ASFR) approach to adapt neural networks, initially trained on non-medical datasets, for vascular segmentation in laparoscopic videos.

    Methods: Our approach utilizes heterogeneous transfer learning by integrating fisher information and sensitivity analysis to mitigate catastrophic forgetting and overfitting caused by limited annotated data in laparoscopic videos. We calculate fisher information to identify and preserve critical model parameters while using sensitivity measures to guide adjustment for new task.

    Results: The fine-tuned models demonstrated high accuracy in vascular segmentation across various complex video sequences, including those with obscured vessels. For both invisible and visible vessels, our method achieved an average Dice score of 41.3. In addition to outperforming traditional transfer learning approaches, our method exhibited strong adaptability across multiple advanced video segmentation architectures.

    Conclusion: This study introduces a novel heterogeneous transfer learning approach, ASFR, which significantly enhances the precision of vascular segmentation in laparoscopic videos. ASFR effectively addresses critical challenges in surgical image analysis and paves the way for broader applications in laparoscopic surgery, promising improved patient outcomes and increased surgical efficiency.

    Keywords: Laparoscopic surgery; Transfer learning; Vascular segmentation.

    Keywords:vascular segmentation; laparoscopic videos

    目的: 本研究旨在通过开发一种方法来提高手术安全性,该方法可以在腹腔镜手术视频中进行血管分割,即使在能见度有限的情况下也能实现。我们引入了一种自适应敏感性-费雪正则化(ASFR)的方法,用于调整最初在非医学数据集上训练的神经网络,以应用于腹腔镜视频中的血管分割。

    方法: 我们的方法利用异构迁移学习,通过整合费雪信息和敏感性分析来减轻由于腹腔镜视频中注释数据有限而导致的灾难性遗忘和过拟合。我们计算费雪信息以识别并保留关键模型参数,并使用敏感度测量指导新任务的调整。

    结果: 微调后的模型在各种复杂视频序列中的血管分割中表现出了高精度,包括那些血管被遮挡的情况。对于不可见和可见的血管,我们的方法平均达到了41.3的Dice分数。除了优于传统的迁移学习方法外,我们的方法还表现出在多个先进视频分割架构上的强大适应性。

    结论: 本研究引入了一种新颖的异构迁移学习方法——ASFR,该方法显著提高了腹腔镜视频中血管分割的精度。ASFR有效解决了手术图像分析中的关键挑战,并为腹腔镜手术更广泛的应用铺平了道路,有望改善患者的治疗效果和提高手术效率。

    关键词: 腹腔镜手术;迁移学习;血管分割。

    关键词:异质迁移学习; 血管分割; 腔镜视频

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © International journal of computer assisted radiology and surgery. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of computer assisted radiology and surgery

    缩写:INT J COMPUT ASS RAD

    ISSN:1861-6410

    e-ISSN:1861-6429

    IF/分区:2.3/Q3

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Adaptive sensitivity-fisher regularization for heterogeneous transfer learning of vascular segmentation in laparoscopic videos