首页 正文

The International journal of artificial organs. 2025 Jun 6:3913988251346712. doi: 10.1177/03913988251346712 Q41.42024

Optimization of hemocompatibility metrics in ventricular assist device design using machine learning and CFD-based response surface analysis

基于机器学习和计算流体动力学响应面分析的心室辅助装置设计中血液相容性指标的优化 翻译改进

Mohamed Bounouib  1, Mourad Taha-Janan  1, Wajih Maazouzi  2

作者单位 +展开

作者单位

  • 1 Laboratory of Applied Mechanics and Technologies, ENSAM, Mohammed V University in Rabat, Rabat, Morocco.
  • 2 Industrial and Health Science and Technology Research Center (STIS), ENSAM, Mohammed V University in Rabat, Rabat, Morocco.
  • DOI: 10.1177/03913988251346712 PMID: 40474745

    摘要 中英对照阅读

    Ventricular assist devices (VADs) are essential for end-stage heart failure patients, but their design must balance hydraulic efficiency and hemocompatibility to minimize blood damage. This study presents a multi-objective optimization framework integrating computational fluid dynamics (CFD), Random Forest Regression (RFR), and Bayesian optimization to improve VAD rotor hemocompatibility. Seven key design parameters (inlet/outlet blade angles, blade count, rotational speed, clearance gap, blade thickness, and rotor length) were optimized using a D-optimal design of experiments. The RFR surrogate model demonstrated superior performance in handling the complex parameter interactions, achieving high predictive accuracy (R2 > 0.84 for all hemocompatibility metrics). CFD simulations employing a Carreau-Yasuda blood model and rigorous mesh independence analysis evaluated shear stress distributions, exposure times, hemolysis index (HI), and platelet activation state (PAS). The optimized design achieved 97.24% of blood flow with shear stress <50 Pa, a HI of 0.01%, and PAS of 1 × 10-6%, representing significant improvements over baseline configurations. While this computational study provides comprehensive parametric insights, future experimental validation is recommended to confirm these findings under physiological conditions. The proposed framework offers a systematic approach for developing high-performance VADs with enhanced hemocompatibility.

    Keywords: Bayesian optimization; Random Forest Regression; Ventricular assist device (VAD); computational fluid dynamics (CFD); hemocompatibility.

    Keywords:ventricular assist device; hemocompatibility metrics; machine learning

    心室辅助装置(VAD)对于终末期心脏病患者至关重要,但其设计必须在液压效率和血液相容性之间取得平衡,以减少血液损伤。本研究提出了一种多目标优化框架,该框架结合了计算流体动力学(CFD)、随机森林回归(RFR)和贝叶斯优化,以改善VAD转子的血液相容性。通过D-最优实验设计对七个关键设计参数(入口/出口叶片角度、叶片数量、旋转速度、间隙距离、叶片厚度和转子长度)进行了优化。RFR代理模型在处理复杂的参数交互方面表现出色,在所有血液相容性指标上均达到了较高的预测准确性(R2>0.84)。采用Carreau-Yasuda血液模型进行CFD模拟,并通过严格的网格独立性分析评估剪切应力分布、暴露时间、溶血指数(HI)和血小板活化状态(PAS)。优化设计实现了97.24%的血流在剪切应力小于50帕的情况下运行,HI为0.01%,PAS为1×10-6%,相较于基线配置有了显著改进。尽管这项计算研究提供了全面的参数见解,但仍建议进行未来的实验验证以确认这些发现是否适用于生理条件。所提出的框架提供了一种系统的方法来开发具有增强血液相容性的高性能VAD。

    关键词:贝叶斯优化;随机森林回归;心室辅助装置(VAD);计算流体动力学(CFD);血液相容性。

    关键词:ventricular辅助设备; 血液相容性指标; 机器学习

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © The International journal of artificial organs. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:International journal of artificial organs

    缩写:INT J ARTIF ORGANS

    ISSN:0391-3988

    e-ISSN:1724-6040

    IF/分区:1.4/Q4

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Optimization of hemocompatibility metrics in ventricular assist device design using machine learning and CFD-based response surface analysis