Cortical arousals are brief brain activations that disrupt sleep continuity and contribute to cardiovascular, cognitive, and behavioral impairments. Although polysomnography is the gold standard for arousal detection, its cost and complexity limit use in long-term or home-based monitoring. This study presents a noninvasive machine learning based framework for detecting cortical arousals using the RestEaze™ system, a leg-worn wearable that records multimodal physiological signals including accelerometry, gyroscope, photoplethysmography (PPG), and temperature. Across multiple methods tested, including logistic regression, XGBoost, and Random Forest classifiers, we found that features related to movement intensity were the most effective in identifying cortical arousals, while heart rate variability had a comparatively lower impact. The framework was evaluated in 14 children with attention-deficit/hyperactivity disorder (ADHD) who were being assessed for possible restless leg syndrome related sleep disruption. The Random Forest model achieved the best performance, with a ROC AUC of 0.94. For the arousal class specifically, it reached a precision of 0.57, recall of 0.78, and F1-score of 0.65. These findings support the feasibility of wearable-based machine learning for real-world arousal detection, demonstrated here in a pediatric ADHD cohort with sleep-related behavioral concerns.
Research square. 2025 May 16:rs.3.rs-6574148. doi: 10.21203/rs.3.rs-6574148/v1
Detection of Cortical Arousals in Sleep Using Multimodal Wearable Sensors and Machine Learning
基于多模可穿戴传感器和机器学习的睡眠皮层觉醒检测 翻译改进
作者单位 +展开
作者单位
DOI: 10.21203/rs.3.rs-6574148/v1 PMID: 40470241
摘要 中英对照阅读
皮层唤醒是短暂的大脑激活事件,会破坏睡眠的连续性,并导致心血管、认知和行为功能障碍。尽管多导睡眠图是检测唤醒的标准方法,但其成本和复杂性限制了它在长期或家庭监测中的应用。本研究提出了一种基于机器学习的非侵入性框架,使用RestEaze™系统(一种记录包括加速度计、陀螺仪、光电容积描记法(PPG)和温度在内的多模态生理信号的腿部穿戴设备)来检测皮层唤醒。在测试的方法中,包括逻辑回归、XGBoost和随机森林分类器,我们发现与运动强度相关的特征最有效地识别皮层唤醒,而心率变异的影响相对较低。该框架在一个由14名被评估是否有注意力缺陷多动障碍(ADHD)相关不安腿综合征睡眠中断的儿童组成的队列中进行了评价。随机森林模型取得了最佳性能,在ROC AUC上达到了0.94。在具体识别觉醒事件时,其精度为0.57,召回率为0.78,F1得分为0.65。这些发现支持了基于可穿戴设备的机器学习在现实世界中检测唤醒事件的可行性,并在此研究中展示了在具有睡眠相关行为问题的儿科ADHD队列中的应用。
相关内容
-
Advances in Machine Learning for Wearable Sensors
面向可穿戴传感器的机器学习研究进展
ACS nano. 2024 Aug 27;18(34):22734-22751.
-
Posture
姿态
International anesthesiology clinics. 1966 Winter;4(4):815-7.
-
Delirium detection using wearable sensors and machine learning in patients with intracerebral hemorrhage
卒中后谵妄的可穿戴设备连续监测及机器学习预警模型研究
Frontiers in neurology. 2023 Jun 9:14:1135472.
-
The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review
机器学习在商用可穿戴传感器步态监测验证中的作用系统性综述
Sensors (Basel, Switzerland). 2021 Jul 14;21(14):4808.
-
Posture
姿态
Canadian Medical Association journal. 1926 Dec;16(12):1508-11.
-
Wearable Sensors and Machine Learning for Hypovolemia Problems in Occupational, Military and Sports Medicine: Physiological Basis, Hardware and Algorithms
可穿戴传感器和机器学习在职业、军事和体育医学低血容量问题中的应用:生理学基础、硬件与算法
Sensors (Basel, Switzerland). 2022 Jan 7;22(2):442.
-
Rapid detection of internalizing diagnosis in young children enabled by wearable sensors and machine learning
基于可穿戴传感器和机器学习的幼儿内部症状快速检测技术
PloS one. 2019 Jan 16;14(1):e0210267.
-
Detecting falls with wearable sensors using machine learning techniques
基于机器学习的可穿戴传感器跌倒检测方法研究
Sensors (Basel, Switzerland). 2014 Jun 18;14(6):10691-708.
-
SOMNOS
沉睡
California state journal of medicine. 1907 Feb;5(2):39.