首页 正文

Computers in biology and medicine. 2025 Jun 2:194:110258. doi: 10.1016/j.compbiomed.2025.110258 Q17.02024

SASWISE-UE: Segmentation and synthesis with interpretable scalable ensembles for uncertainty estimation

基于可解释的可扩展集成进行不确定性估计的分段和综合(SASWISE-UE) 翻译改进

Weijie Chen  1, Alan B McMillan  2

作者单位 +展开

作者单位

  • 1 Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, WI 53705, USA. Electronic address: weijie.chen@wisc.edu.
  • 2 Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53705, USA; Department of Radiology, University of Wisconsin-Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, WI 53705, USA. Electronic address: abmcmillan@wisc.edu.
  • DOI: 10.1016/j.compbiomed.2025.110258 PMID: 40460564

    摘要 中英对照阅读

    This paper introduces an efficient sub-model ensemble framework aimed at enhancing the interpretability of medical deep learning models, thus increasing their clinical applicability. By generating uncertainty maps, this framework enables end-users to evaluate the reliability of model outputs. We developed a strategy to generate diverse models from a single well-trained checkpoint, facilitating the training of a model family. This involves producing multiple outputs from a single input, fusing them into a final output, and estimating uncertainty based on output disagreements. Implemented using U-Net and UNETR models for segmentation and synthesis tasks, this approach was tested on CT body segmentation and MR-CT synthesis datasets. It achieved a mean Dice coefficient of 0.814 in segmentation and a Mean Absolute Error of 88.17 HU in synthesis, improved from 89.43 HU by pruning. Additionally, the framework was evaluated under image corruption and data undersampling, maintaining correlation between uncertainty and error, which highlights its robustness. These results suggest that the proposed approach not only maintains the performance of well-trained models but also enhances interpretability through effective uncertainty estimation, applicable to both convolutional and transformer models in a range of imaging tasks.

    Keywords: Ensemble learning; Image segmentation; Image synthesis; Medical images; Uncertainty estimation.

    Keywords:segmentation and synthesis; uncertainty estimation; interpretable ensembles

    本文介绍了一种高效的子模型集成框架,旨在提升医学深度学习模型的可解释性,从而增加其临床应用价值。通过生成不确定性地图,该框架使最终用户能够评估模型输出的可靠性。我们开发了一种策略,可以从单一训练良好的检查点中生成多样化的模型,便于训练一个模型家族。这包括从单个输入产生多个输出、将它们融合成最终输出以及根据输出差异估计不确定性。使用U-Net和UNETR模型进行分割和合成任务,该方法在CT身体分割和MR-CT合成数据集上进行了测试,在分割中实现了0.814的平均Dice系数,在合成中实现了88.17 HU的平均绝对误差(从裁剪后的89.43 HU改进)。此外,该框架还在图像损坏和数据欠采样条件下进行了评估,保持了不确定性与错误之间的相关性,突显了其鲁棒性。这些结果表明,所提出的方法不仅维持了良好训练模型的表现力,还通过有效的不确定性估计增强了可解释性,并适用于卷积和转换器模型在各种成像任务中的应用。

    关键词:集成学习;图像分割;图像合成;医学图像;不确定性估计。

    版权所有 © 2025 Elsevier Ltd. 保留所有权利。

    关键词:分割与合成; 不确定性估计; 可解释集成

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Computers in biology and medicine. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Computers in biology and medicine

    缩写:COMPUT BIOL MED

    ISSN:0010-4825

    e-ISSN:1879-0534

    IF/分区:7.0/Q1

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    SASWISE-UE: Segmentation and synthesis with interpretable scalable ensembles for uncertainty estimation