首页 正文

Clinical proteomics. 2025 May 29;22(1):21. doi: 10.1186/s12014-025-09543-7 Q23.32025

Integrating multimodal data to predict the progression of hormone-sensitive prostate cancer

整合多模态数据以预测雄激素敏感前列腺癌的进展 翻译改进

Xiangfu Lu  1, Chenxi Pan  2, Luhan Yao  3, Jiayu Wan  3, Xiaolong Xu  4, Wei Wang  4, Xiangying Wang  2, Xiaoyun Liu  4, Zhonghua Jin  5, Hongyu Wang  6, Yi He  7  8, Bo Yang  9  10

作者单位 +展开

作者单位

  • 1 Department of Urology, 967 th hospital of PLA Joint Logistics Support Force, No.80 Shengli Road, Dalian, 116014, PR China.
  • 2 State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116023, PR China.
  • 3 School of Information and Communication Engineering, Dalian University of Technology, Dalian, Dalian, 116023, PR China.
  • 4 Department of Urology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, 116023, PR China.
  • 5 Department of chest surgery, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, 116023, PR China.
  • 6 School of Information and Communication Engineering, Dalian University of Technology, Dalian, Dalian, 116023, PR China. whyu@dlut.edu.cn.
  • 7 Department of Urology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, 116023, PR China. heyi_gzr@163.com.
  • 8 The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China. heyi_gzr@163.com.
  • 9 Department of Urology, The Second Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, 116023, PR China. yangbo20160101@163.com.
  • 10 The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China. yangbo20160101@163.com.
  • DOI: 10.1186/s12014-025-09543-7 PMID: 40442579

    摘要 中英对照阅读

    Identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC) is a challenge. This work has highlighted important prognostic insights based on proteomics data, magnetic resonance imaging (MRI) and histopathological specimens. We retrospectively developed a multi-omics-based model based on 77 patients with HSPC. In order to identify the features related to survival time under each mode, we used the Boruta algorithm for feature screening. In order to demonstrate the effectiveness of our selected features, we used six machine learning methods to validate the classification of the selected features for each mode. A total of 63 proteome signatures, 60 HE signatures, 56 T2WI signatures, and 54 ADC signatures were identified as features related to the speed of HSPC progression. Ultimately, 30 multi-omics-based features were determined by the least absolute shrinkage and selection operator (LASSO) method and multivariate cox regression. In order to stratify patients with significant disparities in progress, a nomogram model was developed, of which the C-index was 0.906. Accordingly, the developed model could help identify patients who are at a high risk of rapid CRPC progression, and aid clinicians in guiding personalized clinical management and decision-making.

    Keywords: Hormone-sensitive prostate cancer, Histopathology, Proteome, Magnetic resonance imaging, Machine learning.

    Keywords:multimodal data integration; prostate cancer; hormone-sensitive

    识别从激素敏感性前列腺癌(HSPC)快速进展为致命的去势抵抗性前列腺癌(CRPC)的高风险人群是一个挑战。本研究通过基于蛋白质组学数据、磁共振成像(MRI)和病理组织样本的重要预后洞察,对此进行了探讨。我们回顾性地开发了一种多组学模型,该模型基于77名HSPC患者的资料。为了识别每个模式下与生存时间相关的特征,我们使用了Boruta算法进行特征筛选。为了证明所选特征的有效性,我们采用了六种机器学习方法来验证选定的每个模式下的分类特征。总共确定了63个蛋白质组标志物、60个HE(苏木素和伊红染色)标志物、56个T2WI(横向弛豫加权成像)标志物和54个ADC(表观扩散系数)标志物与HSPC进展速度相关。最终,通过最小绝对收缩和选择算子(LASSO)方法和多变量Cox回归分析确定了30个多组学特征。为了区分具有显著差异的患者群体,开发了一个列线图模型,其C指数为0.906。因此,所开发的模型可以帮助识别快速进展至CRPC的高风险患者,并帮助临床医生指导个性化的临床管理和决策。

    关键词:激素敏感性前列腺癌、病理组织学、蛋白质组、磁共振成像、机器学习。

    关键词:多模态数据集成; 前列腺癌; 激素敏感型

    翻译效果不满意? 用Ai改进或 寻求AI助手帮助 ,对摘要进行重点提炼
    Copyright © Clinical proteomics. 中文内容为AI机器翻译,仅供参考!

    相关内容

    期刊名:Clinical proteomics

    缩写:CLIN PROTEOM

    ISSN:1542-6416

    e-ISSN:1559-0275

    IF/分区:3.3/Q2

    文章目录 更多期刊信息

    全文链接
    引文链接
    复制
    已复制!
    推荐内容
    Integrating multimodal data to predict the progression of hormone-sensitive prostate cancer